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IDEMPOTENTS IN GROUP RINGS
. ■

D. S.   PASSMAN

Abstract. In this note we offer an elementary entirely self-

contained proof of a theorem of Kaplansky on idempotents in com-

plex group rings.

Let C[G] denote the (discrete) group algebra of a not necessarily

finite group G over the complex numbers. If

a =   "52 ax-x E C[G]

then we define the trace of a to be tr a = ai, the coefficient of 1£G.

Theorem (Kaplansky). Let e^O, 1 be an idempotent in C[G].

Then tr eis a totally real algebraic number with the property that it and

all its conjugates lie strictly between 0 and 1.

In the original proof of this result (see [l, pp. 122-123]), C[G] was

embedded into WiG), the weak closure of its action on the Hubert

space LAG). In a later proof [2] due to Susan Montgomery, C[G]

was embedded into the uniform closure of its action on LAG). In this

note we offer an elementary, completely self-contained proof of this

result and we work entirely within C[G].

Let a= 2^ ax-x, /3= ^ bx-x, y =^2 cx-x be elements of G[G]. We

define an inner product and appropriate norms on C[G] by

(<*, ß) =^2axbx,

\\4 =i«,ay>2 = (z\a*\2)1'\

I « | = 2* | ax | ,
x

where ~~ denotes complex conjugation.

Lemma 1. With the above notation we have

(i) tr aß = tr ßa;

(ii) \\a+ß

(iii)  | tr a ¿HL («. l)=tr a
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(iv) (a, ßy) = (ay*, ß) where 7* = ^ f.-*-1;

(v) |M|£||a||-|/9|.

Proof. Clearly tr aß = ¿^, aj)x~l and this is symmetric in the a's

and b's so (i) follows. Part (ii) is of course just the triangle inequality

and (iii) is obvious.

Now it is easy to see that the map *:7—>7* is in fact an anti-

automorphism of C[G]. Moreover

(«, Ä = I>*5x = tr aß*.
■     4

X

Thus

(a, ßy) = tr a(ßy)* = tr ay*ß* = (ay*, ß)

and (iv) is proved. As a special case of this, we observe that for xEG

\\ax\\ = (ax, ax)112 = (axx*, a)112 = (a, a)112 = \\a\\

since x* =x_1.

Finally by (ii) and the above

\<*ß\\ = ^abx-x\ áEM.-x|| = EMI I *„ I =||«||-|/»i

and the result follows.

Now let e^O be an idempotent in C[G] and set M = eC[G] and

d = inia£M ||l — a||. For each integer n choose anE\M with ||l—an||2

<d2+l/n*.

The following lemma is the key to our proof of the theorem.

Lemma 2. Let ßEM. Then

\(ß,l- an) I   á \\ß\\/n2.

Proof. This is trivial for /3 = 0 so assume ß^O and set

k = (l -an, ß)/\\ß\\2- Then an+kßEM so

||l - a„ - ¿0||2 ^ d2 > ||l - an||2 - 1/m4.

Thus

1/V > || 1 - a„||2 - || 1 - an - kß\\2

■» (1 — a», 1 — a„) — (1 — an — kß, 1 — a„ — kß)

= k(ß, 1 - an) + k(l - an, ß) - kk(ß, ß)

=  \(ß,l-an)\2/\\ß\\2

and the result follows.
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Lemma 3. There exists nonnegative real constants r' and r" with

(i)  I tr ctn — \\otn\\2\ úr'/n,

(ii)  ||e—aree|| ^r"/n.

Proof. We first observe that

||«. - l|| á (d2 + 1/n')1'2 á d + 1

and, by Lemma l(ii),

|k|| è ||l|| + ||«»- l|| Sd+2.

(i). Since ctnEM, Lemma 2 yields

| (a*, 1 - a,) |   Ú \\an\\/n2 ^ |]a,||/» g (d + 2)/n.

Moreover, by Lemma l(iii), we have

(a„, 1 — a„) = (an, 1) — (a„, a») = tr a„ — ||a»||2

so (i) follows with r' = d-t-2.

(ii) By Lemma l(iv)

||e-«ne||2= ((1 -an)e, (1 - an)e)

= ((1 - an)ee*, 1 — an).

Now (1 —a„)ee*=ee*—a„ee*GMso Lemma l(v) and Lemma 2 yield

||e-ane||2¿||(l - a„)ee*||/«2

g ||1 -a„\\-\ee*\/n2

è (d + 1) • | ee* | /n2.

Thus the result follows with (r")2 = (d-\-\) • | ee*|.

Lemma 4. tr e is real and tr e^||e||2/| e\ 2>0.

...
Proof. By Lemma l(iii) and Lemma 3 we have

| tran-|klN úr'/n,

I tr e — tr ane | ^ ||e — ane|| 5Í r"/n.

Moreover, by Lemma l(i), tr ane = tr ean = tr a„ since anEM implies

that eoLn = ctn- Thus we have from the above

|tre-|klN á (/ + /')/»
and we conclude that

tr e = lim ||an||2-
n—veo

Therefore tr e is real and nonnegative.
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Now Lemma 1 (ii), (v) and Lemma 3(ii) yield

IMI ^ ||« - «ne|| + ||a»e|| g r"/n + \\an\\- \ e\.

Thus taking limits as n—* °° we obtain

IHI Ú (tre)1'2- | e\    and    tr e è ||e||V \e |2 > 0.

We now proceed to prove the Theorem. Let e^O, 1 be an idem-

potent in C[G]. Then by Lemma 4, tr e>0. Since 1 — e is also a non-

zero idempotent, Lemma 4 yields 1— tr e = tr(l— e)>0 so tr e<l. Let

a be a field automorphism of the complex numbers. Then a clearly

induces a ring automorphism of C[G] by

a   = ? .aT.-x.

Since e" is again an idempotent in C[G] and tr e' = (tr e)" the above

yields 1 >(tr e)">0 for all a. Now if tr e is transcendental over the

rationals then there certainly exists a field automorphism a such that

(tr e)" is not real, a contradiction. Thus tr e is algebraic and the

Theorem is proved.

There is an interesting consequence of this result, again due to

Kaplansky, which we include for the sake of completeness.

Corollary. Let a, ßEC[G] and suppose that aß=l. Then ßa=l.

Proof. Set e=ßa. Then

e2 = ß(aß)a = ßa = e

so e is an idempotent in C[G]. Moreover, by Lemma l(i),

tre = tr/3« = tr aß = 1.

Thus by the Theorem we must have e= 1.
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