STABLE HOMEOMORPHISMS ON INFINITE-DIMENSIONAL NORMED LINEAR SPACES

D. W. CURTIS AND R. A. McCOY

ABSTRACT. R. Y. T. Wong has recently shown that all homeomorphisms on a connected manifold modeled on infinite-dimensional separable Hilbert space are stable. In this paper we establish the stability of all homeomorphisms on a normed linear space E such that E is homeomorphic to the countable infinite product of copies of itself. The relationship between stability of homeomorphisms and a strong annulus conjecture is demonstrated and used to show that stability of all homeomorphisms on a normed linear space E implies stability of all homeomorphisms on a connected manifold modeled on E, and that in such a manifold collared E-cells are tame.

- 1. Introduction. R. Y. T. Wong showed in [12] that all homeomorphisms on s, the countable infinite product of lines, are stable. He later showed [13] that all homeomorphisms on a connected manifold modeled on s are stable. (It is known that s is homeomorphic to every infinite-dimensional separable Fréchet space.) In this paper we extend the first result to normed linear spaces E such that E is homeomorphic to E^{ω} , the countable infinite product of copies of E. Such spaces include all infinite-dimensional Hilbert and reflexive Banach spaces [2]. Presently, there are no known examples of infinite-dimensional Banach spaces which do not satisfy this condition. We also establish, by an argument more general than that in [13], the stability of all homeomorphisms on a connected manifold modeled on a normed linear space E such that all homeomorphisms on E are stable.
- 2. Stability of homeomorphisms. For a topological space X, H(X) will denote the group of homeomorphisms, and SH(X) the subgroup of stable homeomorphisms.
- 2.1. LEMMA (KLEE [8]). For E an infinite-dimensional normed linear space, there exists a homeomorphism of E onto $E\setminus\{0\}$, supported on the unit ball.

Presented to the Society, February 6, 1970; received by the editors January 31, 1970 and, in revised form, June 23, 1970.

AMS 1969 subject classifications. Primary 4610, 5755.

Key words and phrases. Infinite-dimensional normed linear spaces, connected infinite-dimensional manifolds, stable homeomorphisms, collared cells, annulus conjecture.

2.2. THEOREM. If E is a normed linear space such that $E \simeq E^{\omega}$, then SH(E) = H(E).

PROOF. By (2.1) we have $E \simeq S_1 \times (-1, 1)$, where S_1 is the unit sphere. Thus $E \simeq E^\omega \simeq S_1^\omega \times s \simeq S_1^\omega \times s \times [0, 1) \simeq E \times [0, 1)$. Let $h \in H(E \times [0, 1))$ and $K = E \times \{0\}$. With the above hypotheses on E, Cutler [5] has shown that K is E-deficient (i.e., there exists a homeomorphism of $E \times [0, 1)$ onto $E \times E$ taking K into $E \times \{0\}$), and that the finite union of E-deficient sets is E-deficient. Thus $K \cup h(K) \subset E \times [0, 1)$ is E-deficient, and we may consider $E \times [0, 1)$ as $E \times E$, with $K \cup h(K) \subset E \times \{0\}$. Rather standard techniques yield a stable homeomorphism $g \in SH(E \times E)$ such that g/K = h/K. (Let $j: K \to K'$ be a homeomorphism onto a closed copy of K properly contained in $\{0\} \times E$. By use of Dugundji's extension theorem [6], the projections of the graphs of j and $jh^{-1}/h(K)$ into $E \times \{0\}$ and $\{0\} \times E$ can be extended by stable homeomorphisms of $E \times E$. See Klee [7], Anderson [1].) Then $g^{-1}h/K = \mathrm{id}$, and an easy argument due to Wong [12] shows that $g^{-1}h$ is stable. Thus $h = g(g^{-1}h)$ is stable.

3. Stable homeomorphisms and the strong annulus conjecture. For E a normed linear space, B_r will denote the closed ball with radius r centered at the origin, and S_r the boundary sphere. A subset C of a space X is an E-cell if there exists a homeomorphism from (B_1, S_1) onto (C, Bd C), where Bd C is the topological boundary of C in X. C is a collared E-cell if, for some subset C' of X, there exists a homeomorphism from $(B_2; B_1, S_2)$ onto (C'; C, Bd C'). A subset A of X is an E-annulus if there exists a homeomorphism from $(B_2 \setminus Int B_1, S_1 \cup S_2)$ onto (A, Bd A). The annulus conjecture for E (which we denote by Ann(E)) says that for a collared cell $C \subset Int B_2$, there exists a homeomorphism h from $(B_2 \setminus Int B_1; S_1, S_2)$ onto $(B_2 \setminus Int C; Bd C, S_2)$. Clearly, we may specify that h/S_2 be the identity. Moreover, if we can simultaneously specify that $h/S_1 = f$, where f is any given homeomorphism from S_1 onto Bd C, then we shall say that E satisfies the strong annulus conjecture (S Ann(E)).

Two homeomorphisms f, $g \in H(X)$ are weakly isotopic if there exists a homeomorphism $H: X \times I \to X \times I$ such that H(x, 0) = (f(x), 0) and H(x, 1) = (g(x), 1) for every $x \in X$.

3.1. Lemma. S Ann(E) is equivalent to Ann(E) together with weak isotopy to the identity of homeomorphisms on the unit sphere S_1 .

The following Schoenflies theorem was proved by Brown [3] in the finite-dimensional case, and extended by Sanderson [10] to the infinite-dimensional case.

3.2. LEMMA. Every collared cell in E is tame (i.e., there exists $h \in H(E)$ with $h(B_1) = C$).

We now show that the stability of all homeomorphisms on an infinite-dimensional normed linear space E is equivalent to S Ann(E). This is the exact analogue of the results for Euclidean spaces (where only orientation-preserving homeomorphisms are considered), developed by Brown-Gluck [4]. A similar, but slightly different, infinite-dimensional result can be found in [9].

Let BH(X) denote the subset of homeomorphisms of X which can be bridged to the identity; i.e., $f \in BH(X)$ if for every pair $\{x,y\} \subset X$ such that $x \neq y \neq f(x)$, there exist neighborhoods U of x and V of y, and $h \in H(X)$, such that h/U = f/U and $h/V = \mathrm{id}$. This condition is a sharpened form of one employed by Whittaker [11], and the following lemma (which applies also to connected manifolds modeled on normed linear spaces) can be proved by using essentially his techniques.

- 3.3. Lemma. If E is a locally convex linear Hausdorff space with dim E > 1, then SH(E) = BH(E).
- 3.4. LEMMA. Let E be a normed linear space, and let C_1 , C_2 , and C_3 be E-cells such that $C_1 \subset \operatorname{Int} C_2 \subset C_2 \subset \operatorname{Int} C_3$, C_2 is collared, and $C_3 \setminus \operatorname{Int} C_1$ is an E-annulus. Then $C_2 \setminus \operatorname{Int} C_1$ is an E-annulus if and only if $C_3 \setminus \operatorname{Int} C_2$ is an E-annulus.

PROOF. Standard techniques of Brown-Gluck for Euclidean spaces are applicable in the general case by virtue of the fact that every neighborhood of a collared cell contains a collar [10].

- 3.5. Lemma. Let E be a normed linear space, and let $h \in SH(E)$ with $h(B_1) \subset Int B_2$. Then $B_2 \setminus Int h(B_1)$ is an E-annulus.
- 3.6. LEMMA. Let E be a normed linear space, let $h \in H(S_1)$, and let $h^* \in H(E)$ be the radial extension of h. Then if $h^* \in SH(E)$, h is weakly isotopic to the identity.

PROOFS. Again, these are generalizations of results of Brown-Gluck. We use the one-point cobounded extension \tilde{E} of E, obtained by adjoining a point ω to E with neighborhoods of the form $\omega \cup U$, where $E \setminus U$ is closed and bounded. In the finite-dimensional case, E is the one-point compactification used by Brown-Gluck, and every homeomorphism of E can be trivially extended to a homeomorphism of E. In the infinite-dimensional case there exists, by Klee's result (2.1), a homeomorphism of E onto E which is the identity on E. In (3.5) we

may assume without loss of generality that h(0) = 0, and then apply (3.3) and the above remark to obtain a homeomorphism \tilde{h} of \tilde{E} which agrees with h on a neighborhood of the origin and is the identity on a neighborhood of a point outside B_1 . Clearly, we may assume that \tilde{h} is the identity on a neighborhood of ω , and an application of (3.4) completes the proof. The proof of (3.6) is identical, with the last step unnecessary.

3.7. THEOREM. Let E be an infinite-dimensional normed linear space. Then SH(E) = H(E) if and only if SAnn(E) is true.

PROOF. That SH(E) = H(E) implies S Ann (E) follows from (3.1), (3.2), (3.5), and (3.6). The proof of the converse is contained in the proof of the following corollary.

3.8. COROLLARY. If M is a connected manifold modeled on a normed linear space E, and SH(E) = H(E), then SH(M) = H(M).

PROOF. Let $h \in H(M)$ and $p \in M$. Since there exists $g \in SH(M)$ with gh(p) = p, we may assume that h(p) = p. Let U be a neighborhood of p for which there exists a homeomorphism k from E into U such that $k(B_1)$ is closed in M and k(0) = p. Then $hk(B_\delta) \subset Int k(B_1)$ for some δ , $0 < \delta < 1$. Let $C_1 = k(B_\delta)$ and $C_2 = k(B_1)$. By (3.7) there exists a homeomorphism f from $(C_2 \setminus Int C_1; Bd C_1, Bd C_2)$ onto $(C_2 \setminus Int h(C_1); Bd h(C_1), Bd C_2)$ such that $f/Bd C_1 = h/Bd C_1$ and $f/Bd C_2 = id$. Extending f by the identity outside C_2 and by f inside f we have $f = f(f^{-1}h) \in SH(M)$.

3.9. COROLLARY. If M is as above, and C_1 and C_2 are collared E-cells in M, there exists $h \in H(M)$ with $h(C_1) = C_2$.

PROOF. Since M is connected, we may assume that $C_1 \subset \text{Int } C_2$. Let A be a collar of C_2 . Then $C_2 \cup A \setminus \text{Int } C_1$ and $C_2 \cup A \setminus \text{Int } C_2$ are E-annuli, and there exists $h \in H(M)$ which is supported on $C_2 \cup A$ and extends any given homeomorphism of $(C_1, \text{Bd } C_1)$ onto $(C_2, \text{Bd } C_2)$.

The connected sum $M_1 \# M_2$ of two connected manifolds modeled on a normed linear space E is obtained by deleting the interiors of collared E-cells in M_1 and M_2 and sewing together along the boundaries. By (3.9), if SH(E) = H(E), then $M_1 \# M_2$ is a well-defined manifold modeled on E.

REFERENCES

- 1. R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200-216. MR 34 #5045.
- 2. C. Bessaga and M. I. Kadec, On topological classification of non-separable Banach spaces (to appear).

- 3. M. Brown, A proof of the generalized Schoenflies theorem, Bull. Amer. Math. Soc. 66 (1960), 74-76. MR 22 #8470b.
- 4. M. Brown and H. Gluck, Stable structures on manifolds. I. Homeomorphisms of Sⁿ, Ann. of Math. (2) 79 (1964), 1-17. MR 28 #1608a.
 - 5. W. H. Cutler, Deficiency in F-manifolds (submitted).
- 6. J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367. MR 13, 373.
- 7. V. L. Klee, Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30-45. MR 16, 1030.
- 8. ——, A note on topological properties of normed linear spaces, Proc. Amer. Math. Soc. 7 (1956), 673-674. MR 17, 1227.
- 9. R. A. McCoy, Annulus conjecture and stability of homeomorphisms in infinite-dimensional normed linear spaces, Proc. Amer. Math. Soc. 24 (1970), 272-277.
- 10. D. E. Sanderson, An infinite-dimensional Schoenflies theorem, Trans. Amer. Math. Soc. 148 (1970), 33-40.
- 11. J. V. Whittaker, Some normal subgroups of homeomorphisms, Trans. Amer. Math. Soc. 123 (1966), 88-98. MR 33 #707.
- 12. R. Y. T. Wong, On homeomorphisms of certain infinite dimensional spaces, Trans. Amer. Math. Soc. 128 (1967), 148-154. MR 35 #4892.
- 13. —, On stable homeomorphisms of infinite-dimensional manifolds (submitted).

LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061