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Abstract. In a paper by H. Triebel, the solutions of some

Lamé differential equations are interpreted in terms of conformai

mappings. In the present paper, they are interpreted and con-

structed as covering projections from the unit disk onto Riemann

surfaces with signature. Furthermore, the continuous dependence

of solutions on the coefficient is established.

I. Introduction. We shall consider the following Lamé differential

equations:

(1) n"(z) + [i(l - \/n2W(z; 1, r) + C]r,(z) - 0,

(2) u"(s) + [«?(*; 1, r) + K]Viz) = 0,

where $iz; 1, r) is the Weierstrass $-iunction with periods 1, r,

(t = *'|t|, \t\ >0), C, K are real parameters, wè 2 isa positive integer.

Triebel [4, §5 ] shows that for given n and t as above, there exists a

unique real number C (depending on r/, r), such that (1) possesses two

linearly independent solutions. In fact, they can be constructed ex-

plicitly in terms of abelian integrals on a certain compact Riemann

surface. But this construction is not valid for (2) because we no longer

have a compact Riemann surface in this case.

In this paper, we shall consider the equivalent Schwarzian differen-

tial equations to (1) and (2), construct their solutions and interpret

them as covering projections from the unit disk onto Riemann sur-

faces with signature. By a continuity theorem for Fuchsian groups

(Wong [5]), we then conclude that for a fixed t, the solutions of the

Schwarzian differential equations corresponding to (1) tend to those

corresponding to (2) as « tends to °o. The same result holds for (1)

and (2). The main theorems are given in §IV.

II. Preliminaries. The following well-known result shows the equiv-

alence of a Lamé differential equation to a Schwarzian differential

equation.

Theorem 1. If w(z) satisfies the Schwarzian differential equation-
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(3) {w,z} =ki-i/»s)8P(*;1,t) + 2C,

where t, C, n are as above, then l/(w'(z))112, w(z)/(w'(z))112 are two

linearly independent solutions of (1). Conversely, if n(z) is a solution of

(l),andn(z)^0, thenw(z) = f dn/n2 satisfies (3).

The general solution of (3) is given by (aw + b)/(cw+d), a, b, c, d

complex numbers, and ad — bc^O.

The same result holds for (2) and the Schwarzian differential

equation :

(4) {w,z} =Wiz;hr) + 2K.

Here,

w'"       3  /w"\2        d2 1  (d Y
j w, z) = —T - — I —j )   = —- log w'(z) - — I — log w'(z) )

w 2   \w / dz2 2  \dz /

is the Schwarzian derivative.

Next, we shall state some definitions and facts about Fuchsian

groups and Riemann surfaces with signature, which will be used in

the coming sections. The general linear transformation w = T(z)

= (az+b)/(cz+d), a, b, c, dEC, and ad — bc5¿0, is a conformai self-

mapping of the Riemann sphere CW { » }. Here C denotes the com-

plex plane. We shall normalize the transformation by requiring that

ad — bc = \, and represent it by a matrix T = (" ¿). Let 9C = a+d be the

trace of T. Then T is called elliptic, hyperbolic, or parabolic if X is

real and | 9C| <2, | 9c| >2, or | 9c| =2, respectively. T is called loxo-

dromic if 9C is nonreal. If Fm = id for some integer m>i, then T is

elliptic and if n> 1 is the smallest such integer, then T is said to be of

order n. In this case 9C = ± 2 cos(ir/«), the converse is also true.

We shall consider only those linear transformations which leave the

unit circle fixed and map the unit disk A onto itself. Then an elliptic

transformation will have two fixed points: one inside A, the other

being the inverse image of it with respect to the unit circle. A hyper-

bolic transformation will have two fixed points, both on the unit

circle. A parabolic transformation will have one fixed point, which is

on the unit circle.

Let G be a group of linear transformations from A onto itself. G is

called properly discontinuous, if every point Zo of A is contained in a

neighborhood which contains only finitely many points of the orbit

{Azo\ A EG}. In this case, G is also called a Fuchsian group.

Let 5 be a Riemann surface and {Pk}, k = l, 2, 3, ■ ■ ■ , be a dis-

crete (finite or infinite) sequence of points on 5. Let there be an "in-
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teger" j/t^ 2 associated with each point Pk (here Vk may be an actual

integer or oo). This sequence of points and "integers" is called a

"signature" on the Riemann surface and the triple iS, {Pk\, \Vk\) is

called a Riemann surface with signature. Except for a few cases, a

Riemann surface can always be represented by a Fuchsian group.

More precisely, there exists a Fuchsian group G such that

S — \Jrk^œ {Pk} is conformally equivalent to A/G. S — Uni2 {Pk] is

conformally equivalent to AG/G, where AG = A—{all elliptic fixed

points of G\, and 5 is conformally equivalent to Ao/G, where Aq

= AVj{all parabolic fixed points of G]. The natural projection

A—->A/G followed by the conformai mapping A/G—>S — Eyk=a, {Pk} is

locally 1 to 1 at each point of AG. and is locally Vk to 1 at the pre-

images of Pk with vk < °°. G is determined uniquely up to conjugation

by a linear transformation from A onto itself. This is the celebrated

Koebe's theorem. Its statement can be found in Koebe [3], and a

detailed proof is given in Wong [S].

If keeping the points Pk fixed, we vary the numbers v¡¡ in such a

manner that the signature tends to a limit signature, and if we

normalize the representing Fuchsian groups in question, then the

corresponding (normalized) representing Fuchsian groups converge

to the (normalized) representing Fuchsian group which corresponds

to the limit signature. For a precise statement and proof, we refer to

Wong [S]. This is the continuity theorem we shall use in the proof

of part (ii) of Theorem 3, §IV. The meaning of the theorem will be-

come clear there.

III. Construction of a family of Fuchsian groups. In this section,

we shall construct a family of Fuchsian groups, from which we shall

obtain a family of Riemann surfaces with signature. The correspond-

ing covering projections will be solutions to (3) and (4). Consider the

following linear transformations from A onto itself:

1 /l    a\
(5) A=-( ), 0 < a < 1,

(l-a!)"2\a    1/

1 /l iß\
(6) B=- ),        0</3<l.

il-ß2)l'2\-iß     1/

They are both hyperbolic transformations. A has fixed points — 1, 1

and AiO) =a. B has fixed points -*, * and 5(0) =iß. D^BAB^A'1

is a linear transformation from A onto itself with trace D = 2

-4a2ß2/il-a2)il-ß2). Therefore, if

(*) a2ß2 = (1 - a2)(l - ß2),
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Z? is a parabolic transformation with fixed point

8^ = (a+iß)/\a+iß\.

On the other hand, if

(**)        2a2ß2 = (1 - a2)(l - ß2)(l + COs(ir/«)),        w è 2 an integer,

D is an elliptic transformation of order n. The fixed point of D inside

A is given by

5("> =-    1 - (aß sin — ) /( 1 + cos—jl.
a- iß I       \ n} I   \ n/1

We shall denote the group generated by A, B with a, ß satisfying

(*) by G£°\ The group generated by A, B with a, ß satisfying (**)

by G™. Let

(oo) - (oo) (oo) -

5i     = -«<«>,    S2     = -«<">,      S3    =«<->;
(n) - (n) (n) -

5i    = - 8M,    02     = - á(n),      &s    = 5<">.

Join S(00), 8["\ 5a"', 53°°> with circular arcs perpendicular to the unit

circle. Call the region bounded by them R^. Do the same for 5(n),

8«, 5<B), Sj¡¡> and get the region R™. We conclude easily that^(ii"')

= «<->, ̂ (5<")) = 53") and .4 maps the arc o^S^ onto 8^8^. Simi-

larly, B(0 = ii"}. 5(53")) = S(") and B maps Os"' onto «i"»««—>.

Furthermore, i?^"0 is a fundamental region for the group Gi"°. And

the vertices S<M>, ô[°°\ S^°\ ô3"> form a parabolic cycle. Similarly, R™

is a fundamental region for the group G«'. The vertices 5(n), S[n>,

8™, 83n) form an elliptic cycle with sum of angles of the vertices equal

to 27t/m. Therefore, each angle is exactly ir/2n. From the existence

of their fundamental regions, it follows that G^, G^"' are properly

discontinuous, hence Fuchsian groups. All these facts can be found

in Ford [2] or any text on automorphic functions.

IV. Main theorems. For simplicity, if t=í|t|, \t\ >0, then let

I, be the rectangle with vertices 0, 1, 1+r, r. Let ß denote an integer

^2 or ».

Theorem 2. (i) For a fixed ß, given any 0 <a < 1, there exists a unique

t (t = î|t| , |t| >0), and a unique conformai mapping <jf>l'1> from i?«'

onto h, such that ^°(îw) = 1+t, </#W)=t- 0iMW)=O, 4>f(8f)
= 1. Write t = $> o-> («).

(ii) €>(") is an 1-1, continuous, monotonic-decreasing function onto

the positive imaginary axis, such that \r\ —>» as a—+0 and \t\ —»0 as

a—»1.
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Proof, (a) Let O be the center of A, P the intersection of b^hf

with the real axis and Q the intersection of ofo{li) with the imaginary

axis. By Riemann mapping theorem, there exists a conformai map-

ping tyf from OPb^Q onto the first quadrant of the unit disk, with

0, P, Q mapped onto 0, 1, », respectively. It maps b^ onto a point

S = e*" on the unit circle, O<0<7r/2. By the reflection principle, we

can extend it to a conformai mapping ^^ from i?iM) onto the unit

disk, sending S<">, 5^, bf, bf onto the four points $ = e», $i= -e'*6,

S2 = —ea, ô3 = e~a, respectively. Note that if p — n< », then &£ is

locally 2« to 1 at each of the points bw, of, hf, bf since the angles

of Rf at these points are ir/2n. Next we map the unit disk con-

formally onto the lower half-plane, with the unit circle onto the real

axis and S, Èi, î2, î3 onto the points », ei, e2, e3, respectively, such that

ei>e2>e3 and ei-\-e2-\-e3 = 0. Then by the Schwarz-Christoffel map-

ping, the lower half-plane is mapped conformally onto If for some f

with f = i| t|, | f | >0, and », ei, e2, e3 onto 0, 1, 1 + t, f, respectively.

Finally, If can be mapped conformally onto IT for some r with

t = ¿|t|,|t|>0 such that 0, 1, 1 + r, f are mapped onto 1 +r, t, 0, l,

respectively. The composition of all these is exactly the required con-

formal mapping qb^.

(b) Suppose there exist f = i|f|, |f|>0 and a conformai mapping

#¡° from R? onto I-T, such that ^(íW) = l + f, ^(ii°°)=f,

#S°(«?>)=0, #W) = 1. Then i««*0) o .(**•)-* is a conformai
mapping from IT onto I-T such that 0, 1, 1+t, r are mapped onto 0,

1, 1+f, f, respectively. By the reflection principle, g can be extended

to a conformai mapping from C onto itself such that g(0) = 0, g(l) = 1.

It follows that g = id, hence r = ? and «^ = <£a}.

Remark. From this uniqueness property, it follows that (pfiO)

= 5(1+t), and <bf maps the x-axis onto the line Lx through ¿(1+t)

and parallel to the real axis, the y-axis onto the line L2 through

|(1+t) and parallel to the imaginary axis. Also, each quadrant goes

to the corresponding quadrant, and points inverse in the x-axis are

mapped onto points inverse in Li\ points inverse in the y-axis are

mapped onto points inverse in L2.

(c) *w is 14. Suppose *w(a) =*<">(«) =t. Then h = (<p^)~1

o (4>{b) is a conformai mapping from R(¡¡ onto Rl„ with vertices

going to the corresponding vertices. By the symmetric properties of

the mappings, it follows that h(0) =0, Ä'(0)>0; it follows that h = id,

hence a — á. The fact that 4>(,,) is continuous, monotonic-decreasing

and I t I —* » as a—»0, | r | —>0 as a—>1 (hence i>(") is onto) follows from

the general theory of functions. (See, for example, Triebel [4, §5].)
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Theorem 3. Given a fixed r (t = í\t\, \t\ >0). Let a„=(^(j'))~1(T).

Then the Fuchsian group G£° is completely determined. Write its

generators A, B, as Aß, B„. Let ^ffL = (4>{¿>)~i. We can extend xp^ ana-

lytically to C. We shall call the extended mapping xpu again. Then

(i) Ap ox¡/IL=xl/l¡ o A, Bu oxpli = \r/ß o B, where A :z>—*z+i, B:z>-*z+t,

zEC.

(ii) An(w)-^AK(w), Bn(w)^Bx(w) normally on A, as n—»».

(iii) \¡/n(z)—*\j/x(z) normally on C, as n—>», (with interpretation to

the corresponding branches).

Here normal convergence means uniform convergence on each

compact subset.

Proof, (a) Note that if we apply inversion to Rfj? in its four sides,

we get four quadrilaterals adjacent to R^\ with circular arcs perpen-

dicular to the unit circle as boundaries. Repeating this process, we

can fill up (without overlapping) A with an infinite system of quadri-

laterals. On the other hand, from the construction of A,,, Bu, R™, if

we apply all elements TEC/? to R(£\ we get exactly the same system

of quadrilaterals. For example, the quadrilateral AU(R™) is exactly

the one obtained by reflecting R™ in the side 8^8^, and Ba(R™) is

the one obtained by reflecting R¡™ in the side ô^ô^'. From this re-

mark and the symmetric properties of <j>™, (i) is easily verified.

Furthermore, it is well known that in Gi<°), the set of transforma-

tions conjugate to (BmAxBZ1AZ1)m, m an integer, is exactly all the

parabolic transformations in the group. Similarly, the set of all

transformations in G™ conjugate to (BnAnBñ1Añl)m, m an integer, is

exactly all the elliptic transformations in the group G™. Therefore AM

= {T(8ix)) | TEG^J} is the set of all parabolic fixed points of the

group G¿"> and A„"= { T(8M) | TEG™} is the set of all elliptic fixed

points of the group G™ inside A. Let ß„ be the set of all image points

of S(M), ôi"', Ô2°°\ 83"} under inversions in the sides, then clearly

Q,x= A„. Define Qn similarly, then ß„=A„.

(b) Let H be the group generated by A, B, then it is well known

that S=C/H is a torus. Let/: C-^S be the natural projection.

Case (i). ß = n< ». Recall that^B> is locally 2ra to 1 at each of the

points ô<">, íj¡"\ 8¡n\ ô3n). Hence <f>™ is locally n to 1 at each of the

points 8<-"\ Si"', 8™, 53n). (Note that in the present case the inverse of

the Schwarz-Christoffel mapping is 2 to 1.) Then extend <p™ to A by

reflection. From part (i), the composite mapping ir™=f o<j>™ can be

regarded as a covering projection from A onto 5 and A/G^ is con-

formally equivalent to 5. Furthermore, it™ is locally n to 1 at each

point of An. Clearly w™ maps A„ onto one single point PES. In

conclusion, tt™ can be regarded as a (ramified) covering projection
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from A onto the Riemann surface with signature (S, P, n) as specified

by the Koebe theorem. (See §11.) And G™ is exactly a representing

Fuchsian group of (S, P, n).

Case (ii). p= ». Then extend <£!"' analytically to A=AVJAX. From

(i) again, the composite mapping ir«") =/ o <p{„J can be regarded as a

covering projection from A onto 5 and A/G^"' is conformally equiv-

alent to 5. ira"* maps A„ onto one point PES also. And A/G«"' is

conformally equivalent to 5— {P\. It follows that we can regard 7^,*'

as a covering projection onto the Riemann surface with signature

(S, P, ») and G{J°J is exactly a representing Fuchsian group as

specified in Koebe's theorem. Therefore, by the continuity theorem

for Fuchsian groups (see §11), assertion (ii) follows immediately.

(c) Consider the branch \fr„, which maps IT onto i?£\ Since

i?^CA, {^„} is a normal family of analytic functions, i.e., each in-

finite sequence of members of this family has a normally convergent

subsequence. We shall prove that the limit function of such a subse-

quence is always \p„, then clearly \¡/„—>\px normally, as n—» ». We may

assume that $„—*$ normally as n—* », where yp is defined and analytic

in IT. We shall prove that \p = ipM. Recall that ô(n) is the fixed point of

D„ = BnAnB~1Añ1 inside A, and ô(M) is the fixed point of

Dx — BKAKBle1A'^. From (ii), it follows that D„—»£>„ normally, as

»-* ». Hence S<»>->8<M> as »-» ». Therefore, yf/(\ +r) =<A=o(l +r) = ô(co) ;

similarly, ^(0)=^.(0), ^(1)=^.(1), ^(t)=^.(t). It follows from

(i) and (ii) that A„&{%)) =^(a+l), B.(^(*))=^(*+t). Next we

extend \(/ analytically to C by these two relations. Then CT=C

— \k-\-h\k, I integers] is mapped onto A and all the lattice points

(k+lr, k, I integers) onto the unit circle. Therefore ^=\¡/o\pZ,1 is a

conformai mapping from A onto itself and has fixed points ô(M),

$f\%\%m\ Therefore f=id.

Theorem 4. Let r (t = i\ t\ , \ r\ >0) be given.

(i) For any integer w^2, there exists a unique real number C= C(n)

such that \pn is a solution to (3).

(ii) There exists a unique real number K such that \pa is a solution to

(4).
(iii) K = limn^C^.

Proof, (a) By Theorem 3(i), if we analytically continue a branch

of 4/n along a closed loop in CT, we return to a function element which

is the previous one followed by an element of the group G{//\ Hence

{ypn, z\ is single-valued and analytic in CT. It is also clear that {ipn, z)

is a doubly periodic function with periods 1, r.

In order to study the singularity of {^„, z] at a lattice point &, we

analytically continue ypn along a closed loop L enclosing z once and in
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the positive direction. We shall return to a function element which

is the previous one followed by an elliptic transformation of order n.

Therefore in a neighborhood of z, \¡/n(z) = (z —â)1/ni>(z), where 4>(z) is

analytic in a neighborhood of z and í>(á)^0. (See Ford [2, Chapter

XI].) Direct computation shows that {\f/n, z} has a pole of order 2

at z with §(1 — l/n2)(z — z)-2 as the leading term in the Laurent series

expansion about z. This result holds for any lattice point. From the

theory of doubly periodic functions, we conclude that {xpn, z}

= %(l — l/n2)p(z; 1, r)-f-2C(n), where C(n) is a real constant uniquely

determined by \f/n.

(b) Similarly, {\¡/„, z} is a single-valued doubly periodic function

analytic in CT, with periods 1, r. If we continue \¡/x analytically along

the loop L as specified above, we shall return to a function element

which is the previous one followed by a parabolic transformation.

Therefore in a neighborhood of the lattice point z, \pa(z) = F(log^(z)),

where F is a linear transformation, SF(z) is analytic in a neighborhood

of z with ^(á) = 0, *'(â) = 1. (See Ford [2, Chapter XI ].) Computation

shows that {^«»z} has a pole of order 2 at è with §(z — a)-2 as the lead-

ing term in the Laurent series expansion about I. Therefore, {^«,, z}

= è^(z; 1, t) + 2A, where A is a real constant uniquely determined by

(c) Proof of part (iii) is clear.

Theorem 5. Let r (t = î'|t| , \t\ >0) be given.

(i) For any integer w^2, there exists a unique real number C=C(n)

such that (1) possesses two linearly independent solutions.

(ii) Suppose 7?in)(z), r?2n)(z) are any two linearly independent solutions

of (1) with C=CM, then the limits jji"'= lim„^M n[n\ v2") = \imn^nf)

exist, and form two linearly independent solutions of (2) with K

= limB^C("».

Proof. Immediate from Theorems 1 and 4.
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