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ON THE CONVERGENCE OF MULTIPLICATIVELY
ORTHOGONAL SERIES

C. J. PRESTON

ABSTRACT. G. Alexits and A. Sharma have recently shown that
if {«p,.},i”_, is a uniformly bounded multiplicatively orthogonal
system on a finite measure space and if {ca}sm is a sequence of
real numbers with > .=, c2< w, then the partial sums D 5-; crpr
converge almost everywhere. We give here a simple proof of this
result,

Let (X, ®, p) be a measure space, with u a finite nonnegative

measure, and let f,:X—R, n=1, 2, - - -, be an orthonormal system
on (X, ®, ), (i.e. f,ELYAX, ®, u) with [x fofm du=20x.). Let ¢,
ER, n=1, 2, - - -, and define s, by s,(x) = E;‘,l ¢,f,(x). Then the

classical result of Menchoff states that s, converges a.e. as n—,
provided D> =, ¢2 (log m)?< . Menchoff also showed that for a
general orthonormal system this is the best result possible. For par-
ticular orthonormal systems we can get better results; for example,
if X=T, and p=Lebesgue measure on T, and f,(x) =cos nx, or
fa(x) =sin nx, then it follows from the famous result of Carleson that
s, converges a.e. as n— o provided Y ., ¢2< . In a preprint of a
paper to appear in Acta. Math. Acad. Sci. Hungar., G. Alexits and A.
Sharma prove a similar result for uniformly bounded multiplicatively
orthogonal systems. (We say {gan}:=1 is a uniformly bounded multi-
plicatively orthogonal system on (X, ®, u) if p,€L*(X, ®, u) with
H(p,,”,,éM for some M and all », and if given any m=1, 2, - - -, and
1S3 <y< -+« <Vm, then [x ¢y, - + - @, du=0.)
Alexits and Sharma prove the following:

THEOREM. Let {go,,}:,l be a uniformly bounded multiplicatively
orthogonal system on (X, ®, u). Let c,ER, n=1,2, - - -, and let s,(x)
= D" ¢ (x). Then s, converges a.e. as n— o provided D o, c2< ® .

The proof of this theorem by Alexits and Sharma involves some
difficult constructions; we give here a short and simple proof.

We may suppose without loss of generality that [go,.(x)[ =1 for all
xEX and for all n. Let {1#,.},‘:;0 be the product system associated
with {on}m;iie.
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Yn = @il * *  @rpp1 fOrm =214 .o . 4 2om
Yo=1.
Note the following two facts:
(1) fl[/,.dy=0, n=1,2---;
x
2™—1 m
2 E U(x)(y) = II (1 4+ eu(®)en(y)) =20 forallx, y € X.
k=0 k=1

Define n(x) to be the least index such that s,¢)(x) = maxis,s» s»(%).
We have

2"—1

sa(%) = Z akwk(x),

k=0
where
a = Cpy1 if k=2
=0  otherwise,

and s0 s (%) =] 85~ a3
Let (Y, @, w) be any finite measure space, and let {g,,},,_o be any
orthonormal system on (Y, @, w). Then

1 2 @)y
Sa@) (%) = , E argr(t) Z ¥i(%)gi(t) dw ().
Therefore
2"—1 »rE_y
wo@a@| = [ Tasd [ X @0 @ dw(t)|
X Y k=0 X J=0

< [ Eono]uo

L[ "% @ )| awo}

k=0

@y

AELLLTE o

2»(”)_1 1/2
Y b)el) du) dul) w(t)} .

7=0
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Thus
[ soo@) duta)
X
5, 2y W)y
s(Za)[ [ [ T won0 T 40080 00 dute) o

2" (=) _ 1

(iaﬁ) fx fx > @) dux) du),

k=1 k=0

where n(x, y) = min{n(x), n(y)},

< z( }_: ci) fx fx (>_f V@) | du) du()

LI mW)_y
2(Zd) [ [T wernis) duto) duts)  (using )

k=1 k=0

- 2( > ci) fx fxlllo(x)‘llo(}’) du(x) du() (using (1))

- z( >:) (0]

Hence we have

(3 ) Lol

k=1

[ sso@ auta
X

It is well known that such an estimate is sufficient in order to prove
the theorem.
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