ON THE CONVERGENCE OF MULTIPLICATIVELY ORTHOGONAL SERIES

C. J. PRESTON

ABSTRACT. G. Alexits and A. Sharma have recently shown that if $\{\varphi_n\}_{n=1}^{\infty}$ is a uniformly bounded multiplicatively orthogonal system on a finite measure space and if $\{c_n\}_{n=1}^{\infty}$ is a sequence of real numbers with $\sum_{n=1}^{\infty} c_n^2 < \infty$, then the partial sums $\sum_{k=1}^{n} c_k \varphi_k$ converge almost everywhere. We give here a simple proof of this result

Let (X, \mathfrak{B}, μ) be a measure space, with μ a finite nonnegative measure, and let $f_n: X \to \mathbb{R}$, $n = 1, 2, \dots$, be an orthonormal system on (X, \mathfrak{B}, μ) , (i.e. $f_n \in L^2(X, \mathfrak{B}, \mu)$ with $\int_X f_n f_m d\mu = \delta_{m,n}$). Let c_n $\in \mathbb{R}$, $n=1, 2, \cdots$, and define s_n by $s_n(x) = \sum_{\nu=1}^n c_{\nu} f_{\nu}(x)$. Then the classical result of Menchoff states that s_n converges a.e. as $n \to \infty$, provided $\sum_{n=1}^{\infty} c_n^2 (\log n)^2 < \infty$. Menchoff also showed that for a general orthonormal system this is the best result possible. For particular orthonormal systems we can get better results; for example, if X = T, and $\mu = \text{Lebesgue}$ measure on T, and $f_n(x) = \cos nx$, or $f_n(x) = \sin nx$, then it follows from the famous result of Carleson that s_n converges a.e. as $n \to \infty$ provided $\sum_{n=1}^{\infty} c_n^2 < \infty$. In a preprint of a paper to appear in Acta. Math. Acad. Sci. Hungar., G. Alexits and A. Sharma prove a similar result for uniformly bounded multiplicatively orthogonal systems. (We say $\{\varphi_n\}_{n=1}^{\infty}$ is a uniformly bounded multiplicatively orthogonal system on (X, \mathfrak{B}, μ) if $\varphi_n \in L^{\infty}(X, \mathfrak{B}, \mu)$ with $\|\varphi_n\|_{\infty} \leq M$ for some M and all n, and if given any $m=1, 2, \cdots$, and $1 \le \nu_1 < \nu_2 < \cdots < \nu_m$, then $\int_X \varphi_{\nu_1} \cdots \varphi_{\nu_m} d\mu = 0$.)

Alexits and Sharma prove the following:

THEOREM. Let $\{\varphi_n\}_{n=1}^{\infty}$ be a uniformly bounded multiplicatively orthogonal system on (X, \mathfrak{B}, μ) . Let $c_n \in \mathbb{R}$, $n = 1, 2, \cdots$, and let $s_n(x) = \sum_{\nu=1}^n c_{\nu} \varphi_{\nu}(x)$. Then s_n converges a.e. as $n \to \infty$ provided $\sum_{n=1}^{\infty} c_n^2 < \infty$.

The proof of this theorem by Alexits and Sharma involves some difficult constructions; we give here a short and simple proof.

We may suppose without loss of generality that $|\varphi_n(x)| \leq 1$ for all $x \in X$ and for all n. Let $\{\psi_n\}_{n=0}^{\infty}$ be the product system associated with $\{\varphi_n\}_{n=1}^{\infty}$; i.e.

Received by the editors July 27, 1970.

AMS 1970 subject classifications. Primary 40A05, 42A60, 42A20.

Key words and phrases. Uniformly bounded multiplicatively orthogonal systems, almost everywhere convergence.

$$\psi_n = \varphi_{\nu_1+1} \cdot \cdot \cdot \cdot \varphi_{\nu_m+1}$$
 for $n = 2^{\nu_1} + \cdot \cdot \cdot + 2^{\nu_m}$, $\psi_0 \equiv 1$.

Note the following two facts:

(1)
$$\int_{\Gamma} \psi_n d\mu = 0, \qquad n = 1, 2, \cdots;$$

(2)
$$\sum_{k=0}^{2^{m}-1} \psi_{k}(x)\psi_{k}(y) = \prod_{k=1}^{m} (1 + \varphi_{k}(x)\varphi_{k}(y)) \ge 0 \quad \text{for all } x, y \in X.$$

Define n(x) to be the least index such that $s_{n(x)}(x) = \max_{1 \le r \le n} s_r(x)$. We have

$$s_n(x) = \sum_{k=0}^{2^n-1} a_k \psi_k(x),$$

where

$$a_k = c_{\nu+1}$$
 if $k = 2^{\nu}$,
= 0 otherwise,

and so $s_{n(x)}(x) = \sum_{k=0}^{2^{n(x)}-1} a_k \psi_k(x)$.

Let (Y, α, ω) be any finite measure space, and let $\{g_n\}_{n=0}^{\infty}$ be any orthonormal system on (Y, α, ω) . Then

$$s_{n(x)}(x) = \int_{X} \sum_{k=0}^{2^{n}-1} a_{k} g_{k}(t) \sum_{i=0}^{2^{n(x)}-1} \psi_{i}(x) g_{i}(t) d\omega(t).$$

Therefore

$$\left| \int_{X} s_{n(x)}(x) d\mu(x) \right| = \left| \int_{Y} \sum_{k=0}^{2^{n}-1} a_{k} g_{k}(t) \int_{X} \sum_{j=0}^{2^{n}(x)-1} \psi_{j}(x) g_{j}(t) d\mu(x) d\omega(t) \right|$$

$$\leq \left\{ \int_{Y} \left[\sum_{k=0}^{2^{n}-1} a_{k} g_{k}(t) \right]^{2} d\omega(t) \right.$$

$$\cdot \int_{Y} \left[\int_{X} \sum_{k=0}^{2^{n}(x)-1} \psi_{k}(x) g_{k}(t) d\mu(x) \right]^{2} d\omega(t) \right\}^{1/2}$$

$$= \left\{ \left(\sum_{k=0}^{2^{n}-1} a_{k}^{2} \right) \int_{Y} \int_{X} \int_{X} \sum_{k=0}^{2^{n}(x)-1} \psi_{k}(x) g_{k}(t) \right.$$

$$\cdot \sum_{j=0}^{2^{n}(y)-1} \psi_{j}(y) g_{j}(t) d\mu(x) d\mu(y) d\omega(t) \right\}^{1/2}.$$

Thus

$$\left| \int_{X} s_{n(x)}(x) d\mu(x) \right|^{2}$$

$$\leq \left(\sum_{k=1}^{n} c_{k}^{2} \right) \int_{X} \int_{X} \sum_{X} \sum_{k=0}^{2^{n(x)}-1} \psi_{k}(x) g_{k}(t) \sum_{j=0}^{2^{n(y)}-1} \psi_{j}(y) g_{j}(t) d\omega(t) d\mu(x) d\mu(y)$$

$$= \left(\sum_{k=1}^{n} c_{k}^{2} \right) \int_{X} \int_{X} \sum_{k=0}^{2^{n(x-y)}-1} \psi_{k}(x) \psi_{k}(y) d\mu(x) d\mu(y),$$
where $n(x, y) = \min \left\{ n(x), n(y) \right\},$

$$\leq 2 \left(\sum_{k=1}^{n} c_{k}^{2} \right) \int_{X} \int_{X} \left| \sum_{k=0}^{2^{n(y)}-1} \psi_{k}(x) \psi_{k}(y) \right| d\mu(x) d\mu(y)$$

$$= 2 \left(\sum_{k=1}^{n} c_{k}^{2} \right) \int_{X} \int_{X} \sum_{k=0}^{2^{n(y)}-1} \psi_{k}(x) \psi_{k}(y) d\mu(x) d\mu(y) \quad \text{(using (2))}$$

$$= 2 \left(\sum_{k=1}^{n} c_{k}^{2} \right) \int_{X} \int_{X} \psi_{0}(x) \psi_{0}(y) d\mu(x) d\mu(y) \quad \text{(using (1))}$$

$$= 2 \left(\sum_{k=1}^{n} c_{k}^{2} \right) [\mu(X)]^{2}.$$

Hence we have

$$\left| \int_{\mathbb{X}} s_{n(x)}(x) \ d\mu(x) \right|^2 \leq 2 \left(\sum_{k=1}^{\infty} c_k^2 \right) [\mu(X)]^2.$$

It is well known that such an estimate is sufficient in order to prove the theorem.

CORNELL UNIVERSITY, ITHACA, NEW YORK 14850