A CLASS OF HYPO-DIRICHLET ALGEBRAS

A. G. BRANDSTEIN

ABSTRACT. A method is given of constructing a new class of hypo-Dirichlet algebras of given real codimension.

- 1. Introduction. Let X be a compact Hausdorff space and A a uniform algebra on X, i.e., a uniformly closed subalgebra of C(X), the space of continuous functions on X, that contains the constants and separates points on X. Denote the real parts of the functions in A by Re A, the set of invertible elements of A by A^{-1} , the set of logarithms of moduli of functions in A by $\log A$. Let C(X) denote the space of real continuous functions on X. A uniform algebra on X is called a hypo-Dirichlet algebra if, in addition, there exist f_1, \dots, f_n in A^{-1} , such that the (real) vector space spanned by Re A and $\log |f_1|, \dots, \log |f_n|$ is dense in C(X). The minimal number of such ' f_i ' required shall be called the codimension of Re A. Hypo-Dirichlet algebras were first studied by Wermer [6], and further investigated by Ahern and Sarason [1]. The object here is to exhibit a class of examples of such algebras. The proofs of several of the lemmas in this paper are modeled after [2].
- 2. The algebra A. Let Γ be the annulus $\{Z:1 \le |Z| \le 2\}$, $\gamma_1 = \{Z: |Z| = 1\}$ and $\gamma_2 = \{Z: |Z| = 2\}$. Let Ψ be a homeomorphism of γ_1 on γ_2 which is orientation-preserving and singular, i.e., maps a Borel set of one-dimensional Lebesgue measure 0 onto a set of measure 4π . Let $B = \{f \in C(\Gamma): f \text{ is analytic in int } (\Gamma)\}$, and $A = \{f \in B: f(Z) = f(\Psi(Z))\}$ for all $Z \in \gamma_1$. Let $A_{\Psi} = A$ restricted to γ_1 . Then A_{Ψ} is a uniformly closed algebra of continuous functions on γ_1 , which contains the constants.

THEOREM. A_{Ψ} is a hypo-Dirichlet algebra on γ_1 , and Re A_{Ψ} has codimension 1 in $C_R(\gamma_1)$.

DEFINITION 1. A (complex Borel) measure ν on $\gamma_1 \cup \gamma_2$ is odd if for each Borel set $E \subset \gamma_1$, $\nu(E) = -\nu(\Psi(E))$.

DEFINITION 2. H denotes the class of measures of the form: g(Z) dZ on $\gamma_1 \cup \gamma_2$, where g is any function in the L^1 closure of B restricted to $\gamma_1 \cup \gamma_2$.

Received by the editors July 23, 1969.

AMS 1970 subject classifications. Primary 46J10, 46J20.

Key words and phrases. Real condimension, singular homeomorphism, cohomology.

DEFINITION 3. W is the space of measures $\mu + \nu$ with $\mu \in H$, ν odd. \overline{W} is the weak * closure of W in the space of measures on $\gamma_1 \cup \gamma_2$.

DEFINITION 4. A measure λ on $\gamma_1 \cup \gamma_2$ annihilates A if $\int f d\lambda = 0$, all $f \in A$.

Clearly, every measure in W annihilates A. Also, if λ annihilates A, then $\lambda \subset \overline{W}$.

Note. The measure $-i \cdot (dZ/Z) = d\theta$ is a real measure which annihilates B, and it is readily seen that the only real annihilators of B are of the form: $\alpha \cdot d\theta$, α a real constant.

LEMMA 1. If $\mu \in H$, ν odd, then $\|\nu\| \le 16\|\mu + \nu\|$.

PROOF. Let E be any Borel subset of γ_1 and let m represent Lebesgue measure. Then there are disjoint sets F and G with $E = F \cup G$, $m(F) = m(\Psi(G)) = 0$. Let $K = ||\mu + \nu||$, then $|\nu(F)| = |\nu(F) + \mu(F)| \le K$, since μ is absolutely continuous. $|\nu(G)| = |\nu(\Psi(G))| = |(\mu + \nu)(\Psi(G))| \le K$ for the same reason. Hence $||\nu|| \le 16 K$. q.e.d.

LEMMA 2. Then $W = \overline{W}$.

PROOF. $Q = \{\mu + \nu : \mu \in H, \nu \text{ odd}, \|\mu\| \le 1, \|\nu\| \le 1\}$ is compact. The Krein-Smulian theorem [4, p. 429] then implies $W = \overline{W}$. q.e.d.

LEMMA 3. If ν is an odd measure, then ν is absolutely continuous with respect to arc length on $\gamma_1 \cup \gamma_2$ iff $\nu = 0$.

PROOF. Suppose ν is absolutely continuous. Let E be a Borel subset of γ_1 . Then there are disjoint sets F and G with $E = F \cup G$, $m(F) = m(\Psi(G)) = 0$. Hence $\nu(F) = 0$, since ν is absolutely continuous $\nu(G) = -\nu(\Psi(G)) = 0$ for the same reason. Hence $\nu(E) = 0$. q.e.d.

LEMMA 4. Every real annihilator, λ , of A has the form: $\lambda = \nu + \alpha \cdot d\theta$, where ν is odd and α is a real scalar.

PROOF. Since W is weak * closed, we conclude that if λ is a measure on $\gamma_1 \cup \gamma_2$, which annihilates A, then $\lambda = \mu + \nu$, $\mu \in H$, ν odd. Write $\mu = \mu_1 + i\mu_2$, $\nu = \nu_1 + i\nu_2$ with μ_1 , μ_2 , ν_1 , and ν_2 real. If λ is real $\mu_2 + \nu_2 = 0$. Hence ν_2 is absolutely continuous, hence 0. Then $\mu = \mu_1$ and $\lambda = \mu_1 + \nu_1$. q.e.d.

It follows, in particular, that Re A has codimension ≤ 1 in $C_R(\gamma_1)$.

LEMMA 5. A separates the points of γ_1 . Further, given Z_1 , Z_2 with $1 \le |Z_1| \le 2$, $1 \le |Z_2| < 2$ and $Z_1 \ne Z_2$, then there exists an f in A such that $f(Z_1) \ne f(Z_2)$.

PROOF. Let τ_1 , τ_2 be two points of γ_1 and let δ_{τ_1} , δ_{τ_2} be the point masses at τ_1 , τ_2 respectively. Unless A separates τ_1 and τ_2 , $\delta_{\tau_1} - \delta_{\tau_2}$ will

be a real annihilating measure which is not in W. Now suppose Z_1 , Z_2 are interior to the annulus and A fails to separate them. Let σ_1 , σ_2 be the harmonic measures for Z_1 , Z_2 respectively. Then $\sigma_1 - \sigma_2$ would be a real annihilating measure. Hence, $\sigma_1 - \sigma_2 = \nu + \alpha \cdot d\theta$, ν odd. However $\sigma_1 - \sigma_2$ is absolutely continuous, therefore $\sigma_1 - \sigma_2 = \alpha \cdot d\theta$, contradiction. Finally, if $Z_1 \in \gamma_1$ and Z_2 is interior, a similar argument applies. q.e.d.

Let T be the space obtained from the closed annulus $1 \le |Z| \le 2$ by by identifying Z and $\Psi(Z)$ if $Z \in \gamma_1$. Then functions in A may be regarded as continuous functions on T. Evidently T is topologically a torus since Ψ is orientation-preserving.

LEMMA 6. The space of maximal ideals of A (A_{Ψ}) is homeomorphic to T.

Proof. It must be shown that, if h is a homomorphism of A onto the complex numbers, then h is evaluation at some point of T. If h is not evaluation at any point of T, then for each Z, $1 \le |Z| \le 2$, there is an $f_z \in A$, with $h(f_z) = 0$, $f_z(Z) \neq 0$. Since T is compact, we can select a finite number of functions f_1, \dots, f_n in A such that $h(f_i) = 0$ and open sets Δ_i in $1 \le |Z| \le 2$ such that $\bigcup_{i=1}^n \Delta_i = \{Z: 1 \le |Z| \le 2\}$ and $f_i \neq 0$ in Δ_i . Let σ be a representing measure for h on $\gamma_1 \cup \gamma_2$, i.e., $h(f) = \int f d\sigma$, all $f \in A$. Then $\int f \cdot f_i d\sigma = h(f \cdot f_i) = h(f) \cdot h(f_i) = 0$, $i = 1, \dots$ $n, f \in A$. Thus $f_i \cdot d\sigma$ annihilates A, therefore $f_i \cdot d\sigma = d\mu_i + d\nu_i$, $\mu_i \in H$, ν_i odd. Hence, $f_i(d\mu_i + d\nu_i) = f_i \cdot f_i d\sigma = f_i \cdot (d\mu_i + d\nu_i)$ and so $f_i \cdot d\mu_i$ $-f_i d\mu_i = f_i \cdot d\nu_i - f_j \cdot d\nu_i$. Since the right side is odd and the left side is absolutely continuous both sides vanish. Let Φ_i denote the function in H such that $d\mu_i = \Phi_i \cdot dZ$. Then $f_j \cdot \Phi_i = f_i \cdot \Phi_j$ a.e. on $\gamma_1 \cup \gamma_2$ and so $f_j \cdot \Phi_i = f_i \cdot \Phi_j$ also for 1 < |Z| < 2. We can therefore unambiguously define Φ on $1 \le |Z| \le 2$ by $\Phi(z) = \Phi_i(Z) \cdot (f_i(Z))^{-1}$ for $Z \in \Delta_i$. Then $\Phi \in H$.

We define a measure ν on $\gamma_1 \cup \gamma_2$ by $d\nu = (f_i)^{-1} \cdot d\nu_i$ on $(\gamma_1 \cup \gamma_2) \cap \Delta_i$. Then ν is well defined and odd. Then $f_i d\sigma = f_i \cdot \Phi \cdot dZ + f_i d\nu$. Since $f_i \neq 0$ on Δ_i , we deduce $d\sigma = \Phi dZ + d\nu$. But then $1 = \int d\sigma = \int \Phi \cdot dZ + \int d\nu = 0$. Contradiction. q.e.d.

LEMMA 7. There is an $f \in A^{-1}$ whose logarithm is not single valued on Γ .

PROOF. We regard A as an algebra of continuous functions on T. The circle: |Z| = 3/2 gives rise to a one-cycle l_1 on T. Let l_2 be another one-cycle on T so that l_1 and l_2 generate $H_1(T, Z)$. By a theorem of Arens-Royden, [5], the quotient group $A^{-1}/\exp(A)$ is isomorphic to $H^1(T, Z)$. If T is the torus, $H^1(T, Z)$ is a free abelian group on two

generators. Let g_1 , g_2 be two elements of A^{-1} representing these generators. Write $g_1 = e^{h_1}$, $g_2 = e^{h_2}$, where h_1 , h_2 are (multi-valued) analytic functions on Γ . Let h_1 have period $2n\pi i$ on l_2 , h_2 have period $2m\pi i$ on l_2 . Then $m \cdot h_1 - n \cdot h_2$ has 0 period on l_2 . Suppose it also had 0 period on l_1 . Then $g_1^m \cdot g^{-n} = e^h$ for some $h \in A$. This contradicts the choice of g_1 , g_2 . Hence mh - nh has period $\neq 0$ on l. Therefore $f = g_1^m \cdot g_2^{-n}$ is the desired element of A^{-1} . q.e.d.

PROOF OF THEOREM. We must show that there is an $f \in A_{\psi}^{-1}$ such that $\log |f| \in \text{closure Re } A$. We claim the f of Lemma 7 is such a function. Define a linear functional L on $C_R(\gamma_1 \cup \gamma_2)$ by $L(U) = (1/2\pi) \int_{|Z|=3/2} dv$ where v is the harmonic conjugate of U. Then L is continuous and linear. L(g) = 0 for $g \in \text{Re } A^{-1}$, but $L(\log |f|) \neq 0$ since $\int_{|Z|=3/2} (\arg f) \neq 0$. Therefore $\log |f| \in \text{closure Re } A^{-1}$. q.e.d.

NOTE. By identifying n circles instead of 2, in a similar manner, we can construct a hypo-Dirichlet algebra that has real part of codimension n-1.

REFERENCES

- 1. P. R. Ahern and D. Sarason, The HP spaces of a class of function algebras, Acta Math. 117 (1967), 123-163. MR 36 #689.
- 2. A. Browder and J. Wermer, Some algebras of functions on an arc, J. Math. Mech. 12 (1963), 119-130. MR 26 #1770.
- 3. ——, A method for constructing Dirichlet algebra, Proc. Amer. Math. Soc. 15 (1964), 546-552. MR 29 #2669.
- 4. N. Dunford and J. Schwartz, *Linear operators*, I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1958. MR 22 #8302.
- 5. H. L. Royden, Function algebras, Bull. Amer. Math. Soc. 69 (1963), 281-298. MR 26 #6817.
- J. Wermer, Analytic discs in maximal ideal spaces, Amer. J. Math. 86 (1964), 161-170. MR 28 #5355.

University of Connecticut, Storrs, Connecticut 06268