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A CLASS OF HYPO-DIRICHLET ALGEBRAS

A. G. BRANDSTEIN

ABsTRACT. A method is given of constructing a new class of
hypo-Dirichlet algebras of given real codimension.

1. Introduction. Let X be a compact Hausdorff space and 4 a
uniform algebra on X, i.e., a uniformly closed subalgebra of C(X), the
space of continuous functions on X, that contains the constants and
separates points on X. Denote the real parts of the functions in 4 by
Re 4, the set of invertible elements of 4 by A%, the set of logarithms
of moduli of functions in 4 by log 4. Let C(X) denote the space of real
continuous functions on X. A uniform algebra on X is called a hypo-
Dirichlet algebra if, in addition, there exist fi, - - -, fa in 4!, such
that the (real) vector space spanned by Re 4 and log | fil, oo,
log |fa| is dense in C(X). The minimal number of such ‘f;’ required
shall be called the codimension of Re A. Hypo-Dirichlet algebras were
first studied by Wermer [6], and further investigated by Ahern and
Sarason [1]. The object here is to exhibit a class of examples of such

algebras. The proofs of several of the lemmas in this paper are
modeled after [2].

2. The algebra A. Let T' be the annulus {Z:1=|Z| =2}, 1
={Z:|Z| =1} and y.={Z:| Z| =2 }. Let ¥ be a homeomorphism of
v1 on ¥. which is orientation-preserving and singular, i.e., maps a
Borel set of one-dimensional Lebesgue measure 0 onto a set of mea-
sure 4w. Let B= {fe C():f is analytic in int (T) }, and 4
= {fEB:f(Z) =f(¥(2))} for all ZEv1. Let Ay =4 restricted to 1.
Then Ay is a uniformly closed algebra of continuous functions on v;,
which contains the constants.

THEOREM. Ay s a hypo-Dirichlet algebra on v, and Re Ay has
codimension 1 in Cr(v1).

DEFINITION 1. A (complex Borel) measure » on v,\Uy, is odd if for
each Borel set ECvy1, v(E) = —v(Y(E)).

DerFINITION 2. H denotes the class of measures of the form:
g(Z) dZ on v1\Uv,, where g is any function in the L! closure of B re-
stricted to v1\Uv..
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DEFINITION 3. W is the space of measures u-+v with u€H, v odd.
W is the weak * closure of W in the space of measures on v;\Uv,.

DEFINITION 4. A measure N on v1\Jv. annihilates A if [f d\=0, all
fEA.

Clearly, every measure in W annihilates A. Also, if X annihilates 4,
then \EW.

NoteE. The measure —1-(dZ/Z)=df is a real measure which
annihilates B, and it is readily seen that the only real annihilators
of B are of the form: a-df, a a real constant.

LEMMA 1. If u€H, v odd, then ||v]| <16||u+v]|.

ProoF. Let E be any Borel subset of v; and let m represent Lebes-
gue measure. Then there are disjoint sets F and G with E=FUG,
m(F) =m(¥(G)) =0. Let K =|[u+»||, then |»(F)| = |»(F)+u(F)| <K,
since u is absolutely continuous. |»(G) | =[»(¥(G)) | =| (u+»)(¥(G)) |
<K for the same reason. Hence ||#|| 16 K. q.e.d.

LEMMA 2. Then W=W.

PrROOF. Q= {u+v:uEH, » odd, ||u|| =1, ||#|| =1} is compact. The
Krein-Smulian theorem [4, p. 429] then implies W=W. q.e.d.

LemMA 3. If v is an odd measure, then v is absolutely continuous with
respect to arc length on vi\Jvy, iff v=0.

PROOF. Suppose v is absolutely continuous. Let E be a Borel subset
of 71. Then there are disjoint sets F and G with E=FUG, m(F)
=m(¥(G)) =0. Hence »(F)=0, since v is absolutely continuous
v(G) = —v(¥(G)) =0 for the same reason. Hence »(E) =0. q.e.d.

LEMMA 4. Every real annihilator, N, of A has the form: \=v+a-db,
wherev is odd and o is a real scalar.

ProoOF. Since W is weak * closed, we conclude that if \ is a measure
on v1\Uys, which annihilates 4, then N=p+v, uEH, v odd. Write
p=p1+1iug, v =v1+1ivy With p, pe, »1, and v, real. If N is real ps+v,=0.
Hence »; is absolutely continuous, hence 0. Then p=u; and A =pu;+»;.

q.ed.
It follows, in particular, that Re 4 has codimension =1 in Cg(vy).

LEMMA 5. A separates the points of 1. Further, given Z,, Z, with
1< |Z1| 2,1 _<__|Z2| <2 and Z1#Z,, then there exists an f in A such
that f(Zy) #f(Ze).

ProoOF. Let 71, 72 be two points of 1 and let 8., 3, be the point
masses at 71, 72 respectively. Unless A separates 71 and 73, 8-, —6,, will
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be a real annihilating measure which is not in W. Now suppose
Z\, Z, are interior to the annulus and A4 fails to separate them. Let
o1, 02 be the harmonic measures for Zi, Z, respectively. Then o1 —0,
would be a real annihilating measure. Hence, 61 —0c2=v+a-d#, » odd.
However o1—o3: is absolutely continuous, therefore oy—o:=a-dd,
contradiction. Finally, if Z,Ev, and Z; is interior, a similar argument
applies. q.e.d.

Let T be the space obtained from the closed annulus 1 <|Z| <2 by
by identifying Z and ¥(Z) if Z&Ev:. Then functions in 4 may be
regarded as continuous functions on 7. Evidently T is topologtcally
a torus since V¥ is orientation-preserving.

LEMMA 6. The space of maximal ideals of A (Aw) is homeomorphic
toT.

Proor. It must be shown that, if % is a homomorphism of 4 onto
the complex numbers, then £ is evaluation at some point of T If & is
not evaluation at any point of T, then foreach Z, 1 £ | Z| <2, there is
an fzE A, with k(fz) =0, fz(Z) 0. Since T is compact, we can select a
finite number of functions fi, - - -, fn in 4 such that A(f;) =0 and
open sets A; in 1=<|Z| =2 such that UlA;={Z:1<|Z| <2} and
fi#0 in A. Let o be a representing measure for £ on y,\Uy,, i.e.,
k(f) =[f do, all fEA. Then [f-fido=h(f-f) =k(f)-h(f:) =0,i=1, - - -,
n, fEA. Thus f;-do annihilates 4, therefore f;-do =du;+dv;, u.€H,
Vi odd. Hence, fj(dﬂ..'"}'dl’i) =fj'f.'d0’=f." (dpj'l-dllj) and so f,"d[u
—fiduj=f;-dv;—f;-dv.. Since the right side is odd and the left side is
absolutely continuous both sides vanish. Let ®; denote the function in
H such that du;=%®;-dZ. Then f; ®;=f;-®; a.e. on ¥;\Uy; and so
fi-®i=f;-®; also for 1<|Z| <2. We can therefore unambiguously
define ® on 1= |Z| =<2 by ®(2) =9:(2)- (fi(Z))! for ZEA;. Then
PCcH.

We define a measure v on y1\Jvy, by dv = (f:)~-dv; on (vi\Uy) NA,.
Then v is well defined and odd. Then f;do=f;®-dZ+f;dv. Since
fi#0 on A;, we deduce do =®dZ+dv. But then 1= [do = [®-dZ+ [dv
=0. Contradiction. q.e.d.

LemMA 7. There is an fE A" whose logarithm is not single valued
on T.

ProoF. We regard 4 as an algebra of continuous functions on 7.
The circle: | Z I =3/2 gives rise to a one-cycle /y on T. Let l; be another
one-cycle on T so that /; and /, generate Hy(T, Z). By a theorem of
Arens-Royden, [5], the quotient group 4—!/exp (4) is isomorphic to
H\(T, Z). If T is the torus, H'(T, Z) is a free abelian group on two
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generators. Let g1, g2 be two elements of A~! representing these
generators. Write gy=eM, gy=e", where hy, h; are (multi-valued)
analytic functions on I'. Let %; have period 2#nwz on , h, have period
2mmi on lp. Then m - hy—n-he has 0 period on L. Suppose it also had 0
period on /. Then gf'-g™=¢€" for some h&A. This contradicts the
choice of g, g.. Hence mh—nh has period ##0 on I. Therefore f
=gl'-g; " is the desired elementof 4-1. q.e.d.

ProoF oF THEOREM. We must show that there is an fEA4; " such
that log |f I & closure Re 4. We claim the f of Lemma 7 is such a
function. Define a linear functional L on Cgr(y:\Jvs) by L(U)=
(1/2m) f121=32 dv where v is the harmonic conjugate of U. Then L is
continuous and linear. L(g) =0 for g&Re A, but L(log ]fl )0 since
J1z1=32 (arg f) #0. Therefore log 'fl & closure Re 4. q.e.d.

NoTtE. By identifying # circles instead of 2, in a similar manner, we
can construct a hypo-Dirichlet algebra that has real part of codimen-
sion n —1.
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