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H. NIEDERREITER

Abstract. The notion of an orthogonal system of polynomials

in several variables in finite fields is introduced which generalizes a

concept of orthogonality by Kurbatov and Starkov. Necessary and

sufficient conditions for orthogonality in terms of character sums

and permutation polynomials are given. Results of Carlitz on sys-

tems of equations in finite fields and earlier results of the author on

permutation polynomials in several variables are generalized.

1. Introduction. In [4] Kurbatov and Starkov introduced the

notion of orthogonality modulo a prime of two polynomials F(x, y)

and G(x, y) with integral coefficients. This concept can be extended to

systems of polynomials in an arbitrary number of variables over

finite fields. Necessary and sufficient conditions are given for a system

of polynomials to be orthogonal. In addition, the strong relation to

the theory of permutation polynomials in several variables as de-

veloped in [5], [ó] and to the work of Carlitz [l], [2] on invariant

theory of equations in finite fields is revealed.

Let K = G¥(q) be a Galois field, q = p', p prime, sèL Kn shall

denote  the  Cartesian  product of  n copies  of K.   Unless  stated

otherwise, all polynomials have coefficients in K. Two polynomials

f(xx, ■ ■ ■ ,x„), g(xx, ■ ■ ■ , xn) are considered as equal if/(&i, ■ • ■ ,kn)

= g(ki, ■ ■ • ,kn) for all (ki, • • • , kn)EK".

Definition 1. A system of polynomials fi(xi, ■ • • , xn), • ■ • ,

fm(xx, • • • , x„), 1 ¿m ^n, is said to be orthogonal (in K) if the system

of equations/i(xlf • • ■,xn)=ki, ■ ■ ■ , fm(xi, ■ ■ ■ , x„) — km has exactly

qn-m solutions in K" for each (ki, • • • , km)EKm.

Kurbatov and Starkov [4] considered the case n=m = 2,

K=GF(p). The following definition was given in [5] :

Definition 2. A polynomial/(xi, • • • , x„) is called a permutation

polynomial (over K) if the equation f(xi, • ■ ■ , x„) =k has qn~l solu-

tions in Kn for each kEK.

Using the terminology established in Definition 1, we could as well

say that/ is a permutation polynomial if/ alone forms an orthogonal
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system. It follows immediately from Definition 1 that every non-

empty subsystem of an orthogonal system of polynomials is again

orthogonal. In particular, every polynomial occurring in an orthog-

onal system is a permutation polynomial. On the other hand, the

following theorem shows that every orthogonal system of m poly-

nomials in n variables with m<n can be extended to an orthogonal

system containing more polynomials. This was stated implicitly in

Carlitz [2, p. 391], but we give a different proof which does not refer

to the theory of invariants.

Theorem 1. For every orthogonal system fi(xi, • • ■ , xn), • ■ • ,

fmixi, ■ ■ ■ , x„), l¿m<n, and every r, l^r^n — m, there exist poly-

nomials fm+iixi, ■ ■ • , xn), ■ ■ ■ , fm+rixi, • • • , xn) such that

fiixi, ■ • ■ ,xn), ■ ■ ■ ,fm+rixi, • • • , x„) form an orthogonal system.

Proof. It suffices to show the theorem for r = 1. For (¿1, • • • , km)

EKm, put -4(t,,..., kn) = {ixi, • ■ • , xn)EK"\fiixi, ■ ■ • , xn) = ¿¿,

1 ^i^m}. By hypothesis, each Aikl, ■■■ , *„> has qn~m elements. De-

compose each Aíi¡u ■■■, Jt„) in an arbitrary way intoq pairwise disjoint

subsets j4*, ... , j^, kEK, each of them having q^-m-i elements. We

construct a mapping r:Kn—>K in the following way: a given

(xi, • • • , xn)EKn lies in a uniquely determined ^4*, ... , tm); define

t(xi, ■ ■ ■ , Xn) =k. By the Lagrange interpolation formula for finite

fields as given in Dickson [3], every mapping from Kn into K can be

represented by a polynomial. The polynomial fm+i(xi, • • • , xn)

representing r meets all requirements.

2. Criteria for orthogonality. A necessary and sufficient condition

for orthogonality can be given in terms of characters. We note that

the prime field G¥(p) of K may be identified with the integers modulo

p. The values of the trace function tr(-) relative to the extension

K/GF(p) can then be viewed as integers modulo p. Let f denote a

fixed primitive pth root of unity. The argument of the following proof

is essentially due to Carlitz [l].

Theorem 2. The system fi(xi, • • • , xn), • ■ • , fmixi, • • • , xn),

i^m^n, is orthogonal if and only if for all (61, • • • , bm)EKm with

ibi, • • • , bm)^iO, • • • , 0):

\? J-tr[i>l/i(ol,- • -, o»H-+Wm(<U, • ■ -, a»)]   =0.

Proof. Let iV(¿i, • • • , km) be the number of solutions in Kn of the

system /i(*i, • • • , xn) =¿1, • • • , fmixi, • • • , xn)=km. We have for

all (61, • • -,bm)EK":
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'S * ?-tr(&i/i(ai, • . •, a„)+ • * •+bmfm(ai, • • •, an)]

= 2 A(¿1,  •   •  .,*„)ftr(H»l+■••+*-*-).

If the /¿ are orthogonal then N(ki, ■ ■ ■ ,km)=qn~m for ail

(ki, ■ ■ ■ , km)EKm; thus the sum on the right-hand side of (1) is

equal to:

„n—m \~* >tr(&ifci+- • • +bmkm)

—   gn-ml      V"1      J-tr(6lAl) j   .   •   •  I       V]      ft'<»««*»i> ]

\ tiex / V i„e« /

which is zero if at least one Ô, is nonzero.

Conversely, if the condition of the theorem is satisfied then we have:

N.(h, ■ ■ ■ , km)

—_ V* V* ftrlM/lfel,-- -,o»)-*i)H-+6m(/m(ai. • • •, <•„)-*„)]

qm <0l, • • •, a„)EK" (6i, • • -, bm)£Km

=  - 'S >-tr(— 6ifci— • ■—&«fcm)

qm (»j.-.-.^ex-

. \~^ >tr[&i/i(ai, •••, an)+- ■ •+bnfm(.ai. ■■■. a»)]

lau-.-.a^eK"

1
= — q" = ç"-m.

Corollary. FAe system fi(xi, ■ ■ ■ , x„), ■ ■ • , fm(xi, ■ ■■ , xn),

l^m^n, is orthogonal if and only if for all (bi, • • • , bm)EKm with

(bi, • • • , bm) 5^(0, ■ • • , 0) the polynomial bifi(xu • • • , xn)+ ■ ■ ■

+ bmfm(xi, ■ ■ ■ , xn) is a permutation polynomial over K.

Proof. This follows easily from a criterion for permutation poly-

nomials given in [5] which corresponds to the case m = 1 in Theorem 2.

Theorem 3. The system fi(xi, • ■ • ,xn), • • • ,fm(xi, ■ • • ,x„), l^m

^n, is orthogonal if and only if g(fi(xi, ■ • • ,xn), • • • ,fm(xi, • • -,x„))

is a permutation polynomial in n variables for all permutation poly-

nomials g(yi, ■ • • , ym) in m variables.

Proof. Since g(yi, • • • , ym) =biyi+ ■ • • +bmym is a permutation

polynomial as soon as at least one coefficient is 5^0, the condition is

sufficient by the corollary to Theorem 2. On the other hand, let the/,-
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form an orthogonal system and let g(yi, ■ • ■ , ym) be a permutation

polynomial. For a kEK, consider the equation

gifliXl,  ■  ■ ■ ,   Xn),  ■  ■ • ,fmiXl,  ■  ■  • ,xn))=k.

We get all solutions in Kn by first solving

(2) giyi, ■ • ■ , ym) = k

and then, for each solution (d, • • • , am) of (2), solving the system

(3) fiixi, ■ ■ ■ , xn) = ai,        1 ¡g i ^ m.

Since (2) has exactly qm~l solutions in Km and each system of the

form (3) has exactly qn~m solutions in Kn, the original equation has

exactly qn~l solutions in Kn, i.e. g(f\, ■ ■ • , fm) is a permutation poly-

nomial.

In the light of the corollary to Theorem 2, one might attempt

to introduce a notion of orthogonality for systems of more

than n polynomials in the following way: fiixi, ■ ■ ■ , xn), • • • ,

fmixi, ■ ■ ■ ,x„), m>n, are orthogonal if for all (&i, • • • , bm) EKm with

ib'i, •••, i»)^(0, ■ • •, 0) the polynomial bifiixi, ■ ■ ■ , x„)+ ■ ■ •

+ bmfmixi, ■ ■ ■ , xn) is a permutation polynomial. Unfortunately, no

system of more than n polynomials satisfies this condition. This

follows from

Theorem 4. For every system/i(xi, • • • ,x„), ■ ■ ■ ,/„+i(xi, • • • ,x„)

of polynomials there exist coefficients b\, ■ ■ ■ , bn+iEK not all zero such

that bifiixi, • ■ ■ , xn)+ ■ ■ ■ -\-bn+ifn+iixi, ■ ■ ■ , xn) is not a permuta-

tion polynomial.

Proof. Suppose fi(xi, ■ ■ ■ , x„), ■ ■ • , fn+i(xi, ■ • • , xn) are poly-

nomials such that bifi(xi, ■ ■ ■ , x„)+ • • • -\-bn+ifn+i(xi, • • • , xn) is

a permutation polynomial for all (bi, ■ ■ ■ , bn+i)EK"+1 with

(h, ■ ■ ■ , bn+i) 7^(0, ••• , 0). Then, in particular, the fiixi, ■ • ■ , xn)

■ • • , fnixi, ■ ■ • , xn) form an orthogonal system. Hence the trans-

formation yi=fiixi, ■ ■ ■ , xn), i^i^n, is one-to-one from Kn onto

Kn. The inverse of this mapping can be represented by polynomials,

say Xi = giiyi, ■ ■ ■ , yn), i^i^n. Since the property of being a per-

mutation polynomial in n variables is invariant under one-to-one

transformations from Kn onto Kn, the polynomial

fiyi, ••■,)-«)= fn+iigiiyi, ■ ■ ■ , yn), ■ ■ ■ , gniyi, ■ ■ ■ , y«))

has the property that /(yi, • ■ • ,yn)+biyi+ ■ ■ ■ -\-bHyn is a

permutation polynomial for all (èi, ■ ■ ■ , bn) EKn. By using the

corollary   to   Theorem   2   and   the   fact   that   a   nonzero   multiple
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of a permutation  polynomial  is still  a  permutation  polynomial,

it    follows     that    the    system of    polynomials   /(vi, ■ ■ • , yn)

+ (/(0, 0, • • • , 0)-/(l, 0, • • • , 0))yu y2, ■ • • , yn is orthogonal.

Thus each system

f(yx, ■■ ■ ,yn) + (f(o, o, • • •, o) -/(i, o, • ■ •, o))y, = ku

y2 = k2,

yn  ~  %n,

(kx,  ■   ■   ■  , kn)  E A»,

has exactly one solution. In particular, putting k2— • • ■ = kn = 0, we

get that the equation

g(yx) - f(yx, 0, • • ■ , 0) + (/(0, 0, • • • , 0) - /(l, 0, • • • , 0))yi = *i

has exactly one solution for each kxEK. This is a contradiction to

«(0)=«(D=/(0, 0, • • -,0).

3. Further properties. We introduce the following notion: a coset

of a system of polynomials fi(xi, • • • , x„), • • • , fm(xx, • • • , xn),

1 aw ^«, is a nonempty subset of Kn which is mapped by the system

into a single element of Km. We can then give a necessary and suffi-

cient condition for permutation polynomials with prescribed cosets.

Theorem 5. Let the system fx(xx, • • • , xn), ■ ■ ■ , fm(xx, • • • » xn),

i^m^n, be orthogonal. Then the following two conditions for a poly-

nomial g(xx, ■ ■ ■ , xn) are equivalent:

(i) g(xi, ■ ■ ■ , xn) is a permutation polynomial with all cosets of the

system of fi being cosets of g as well.

(ii) g(xx, • • • , Xn) can be expressed in the form

giXx,   ■   ■   ■  , Xn)   =   HfxiXx,   ■   ■   ■   ,  X„),   ■   ■   ■  ,fmiXx,   '   •   •  , Xn))

with h being a permutation polynomial in m variables.

Proof. Suppose (ii) holds. Then, by Theorem 3, g is a permutation

polynomial and, clearly, every coset of the system of fi is a coset of

g. To show the converse, we define a mapping r from Km into K in the

following way: for a given (yu ■ ■ ■ , ym)EKm there exists

(xx, ■ ■ ■ , xn)EKn such that fi(xx, ■ ■ ■ , x„)=y¿, í^i^m; put

r(yx, ■ ■ ■ , ym) =g(xx, ■ ■ ■ , xn). t is well defined for if (zu ■ ■ ■ , z„)

EKn is another «-tuple with /¿(zi, ■ ■ • , zn)—yu l^i^m, then

{(xi, ■ ■ • , xn), (zi, • • • , z„)} is a coset of the system of /<

and thus r(yi, • ■ • , ym)=g(zi, ■ ■ ■ , zn)=g(xi, ■ ■ ■ , xn). r can be
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represented by a polynomial h(yi, • • • , ym). Then gixi, ■ ■ ■ , x„) =

h(fi(xi, ■ ■ ■ , xn), ■ ■ ■ , fm(xi, • • • , xn)) and h is a permutation

polynomial.

If /i(*i, • • ■ , Xn), • ■ • , fn(xi, • • • , x„) are orthogonal then the

cosets of this system are exactly the one-element subsets of K". Thus

the condition on the cosets of g in (i) is automatically satisfied and we

get the

Corollary. Let fiixi, • • • , x„), • • ■ , fnixi, • ■ ■ , xn) be an orthog-

onal system. Then g(xi, ■ ■ ■ , xn) is a permutation polynomial if and

only if g(xu • • • , xn) =h(flixi, ■ ■■ , xH), ■ • • ,/»(*i, • • • , x„)) with

a permutation polynomial h(yi, ■ ■ ■ , y„).

We have seen in the proof of Theorem 1 that there is quite

a variety of possibilities of completing an orthogonal system

fi(xi, ■ ■ ■ , xn), • • • , fmixi, ■ • ■ , x„), l^m<n, to an orthogonal

system fiixi, ■ ■ ■ , x„), ■ ■ ■ , /«(xi, • • ■ , x„). Nevertheless, we can

find polynomial relations between the polynomials occurring in

different completions.

Theorem 6. Let fi(xi, • • • , xn), • • ■ , fnixi, ■ ■ ■ , xn) be an orthog-

onal system. Then the system /i(xi, • • • , xn), ■ ■ ■ , fmixi, ■ ■ ■ , xn),

gm+i(*i, • • • , Xn), ■ ■ ■ , gnixi, • • • , xn), 1 ^w<M, is orthogonal if and

only if all gjixi, ■ ■ ■ , xn), m + 1 SjSn, are of the form

giixi, ■ ■ ■ ,x„)
0)

X< P(ki,---,km)ifm+liXl,   ■   ■   ■   ,X„),   ■   ■   ■   JniXl,   •   '   '   , Xn))
(ki,---,km)<EKm

■    Utl-ifiiXH-   ■   ■   , Xn)  - hi)*'1]
i-1

with polynomials p[tu....tm) in n — m  variables  such  that  f»^*?.,*,,),

• ' • >^(*i,... ,tm)form an orthogonal system for each (¿i, • • ■ , km)EKm.

Proof. Let/i(xi, • • • ,x„), • • ■ ,/m(xi, • • • , xn), gm+i(xi, • • • ,x„),

• • • » gnixi, ■ ■ ■, xn) be an orthogonal system. For (¿i, • • •, km) EKm,

put A{k1,...,km)= {(xi, • • -, x„)Gi^"|/.(^i, • • -, x„)=ki, i^i^m}.

If (xi, • • • , x„) runs through A(kl,---,km), then both (gm+i(xi, • • • , x„),

• • • , gnixi, ■ • ■ , Xn)) and (/m+i(xi, • • • , x„), • • • ,/„(xi, • • • , x„))

attain each vector value of K"~m exactly once. Thus

(iTm+l(Xl,   ■   •   •  , Xn),   •   •   •   , gniXl,   ■   •   '  , Xn))

=   T(ki,-.-,km)ifm+liXi,   •   •   •   , Xn),   ■   ■   ■   ,/n(xl,   •. •   ■  , XH))

for all (xi, • • • , xn)EA(kl, ---m, where r (*,,....^ is a permutation of
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Kn~m. Let t$ ,.. tm), m + l^ji%n, be the coordinate functions of

T»i.- •■. *»•)• Each rftj ... tm) can be represented by a polynomial

£(*!.•••.*»•) (?»+»> " • * > y«) an<i the desired property of those poly-

nomials follows from the fact that r is a permutation. We have for

(xx, • • • , «Oeift,,,-.«:

0")
gy(»l,  '   '   • jXn)   =  P(kl,---,km)(fm+l(%l,  '   ■  '  , #»),  '   '   *  , /»(#1,  ■  •  • , *»))•

Hence

j #»/

•¿(*l.---.*m)(/"H-l(a;l)   "   "   '   )  X«)l   *   '   -   >/»(*l>   '   -   '   >   *»))

with c denoting a characteristic function. But

m

^   v M1' ■ ' ' - Xm>= nt1 "~ (/<(«!» ■••,«■)- ki)"-1]
(*1.-■ •. *W> £_j

and one part of the proof is complete. On the other hand, if all g¡,

m + l^j^n, are of the form (4) then it is easily seen that the system

fx, • ■ • , fm, gm+i, • • • , g„ is orthogonal.

Kurbatov and Starkov [4 ] established a one-to-one correspondence

between orthogonal systems Fix, y), G(x, y) in GF(¿) and permuta-

tion polynomials in one variable over GF(¿2). We generalize this to

the following

Theorem 7. // n = mr with an integer r, then there is a one-to-one

correspondence between orthogonal systems fi(x%, ■ ■ ■ , xn), ■ • ■ ,

fm(xx, • • ■ , x») in A = GF(g) and permutation polynomials in r vari-

ables over L = GF(qm).

Proof. Let «i, ■ • • , um be a base of L over K. If on, ■ ■ ■ , ar are r

variables in L, then we can write a¿ = X(,_i)m+iwi+x(i_i)m+2C02+ • • • +

XimUm, i^i^r, XjEK, l^j^w. Suppose fi(xu • • • , x„), • ■ ■ ,

fm(xi, • ■ • , Xn) is an orthogonal system in K; then P(ax, ■ ■ ■ , ar)

=/i(xi, • • • , x„)«i-|- ■ • • +fm(xx, ■ • ■ , x„)com defines a permutation

polynomial over L since the equation P(ax, • ■ ■ , ar)=a = kxo)x

+ ■ • ■ +kmum, ktEK, has qn-m=(qm)r-1 solutions for each aEL. On

the other hand, if P(ax, ■ ■ • , ar) is a permutation polynomial over

L, then the coordinate functions/i(*i, • • • ,x„), • • • ,fm(xx, • • • , *»)

with respect to the base on, • • • , um are uniquely determined and

form an orthogonal system in K.

gi(xx, ■

(4)
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The preceding theorem also generalizes another known result. For

in the case m = n, we get a simple corollary the content of which is

already contained in Carlitz [l, p. 409], but is stated there in a

different fashion.

Corollary. There is a one-to-one correspondence between orthogonal

systems fiixi, ■ ■ ■ ,x„), • • • ,/„(xi, • • • , x„) in K = GF(q) and permu-

tation polynomials in one variable over L = GF(qn).

In particular, there are exactly qn\ different orthogonal systems

/i(xi, • • • , x„), • • • ,/„(xi, ■ ■ ■ , xn) in K. More generally, it follows

from results of Carlitz [2, p. 390] that the number of different

orthogonal systems /i(xi, • • • , x„), • ■ ■ , fmixi, ■ ■ ■ , x„) in K is
qn\/(q"~ m\)qm.
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