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ON MATRICES WHOSE NONTRIVIAL REAL LINEAR
COMBINATIONS ARE NONSINGULAR

YIK-HOI AU-YEUNG!

ABSTRACT. Let F be the real field R, the complex field C, or the
skew field H of quaternions, and d(F) the real dimension of F. We
shall write F(n) (resp. F;(n)) for the maximum number of nXn
matrices (resp. # Xz matrices with property x) with elements in F
whose nontrivial linear combinations with real coefficients are non-
singular and x will stand for hermitian (h), skew-hermitian (sk-h),
symmetric (s), or skew-symmetric (sk-s). If # is a positive integer,
we write n=(2a¢+1)2%, where b =c+4d and g, b, ¢, d are nonnega-
tive integers with 0 <¢ <4, and define the Hurwitz-Radon function
pof nas p(n) =2¢+8d. It is known [1], [2] that

R(n) = p(n), C(n) = 2b + 2, H(n) = p(3n) + 4,
Fy(n) = F(3n) + 1,for F = R, Cor H,

where p(3n) = F(3n) =0 if n is odd. In this note we use these known
results to prove the following theorems.

THEOREM 1. Fy_w(n) =F(n)—1, for F=R, C or H.
THEOREM 2. Fy(n) =p(3n)+d(F), for F=R, C or H.

THEOREM 3. Fyy_o(n) =p(2¢F 1) —d(F),if F=Ror Cor F=H and
n>2 and H.k._,(l) =0, H,k-,(Z) =4,

COROLLARY. Hy(n) = H(n) for all n; Hes(n) = H(n) for all n>2.

From the above results, it may be interesting to note that Fu(n)
and F,-n(n) can be expressed by the function F(m), while F,(n) and
Fyx_s(n) can be expressed by p and d(F) except for two exceptional
cases (Hek-s(1) and Hu.4(2)). The corollary follows immediately
from Theorems 2 and 3, the expression of H(n), and the fact that
p(8n) =p(3n)+8.

We denote by M(n, F) (resp. M(n, F.)) the set of all n Xn matrices
(resp. nXn matrices with property x) with elements in F. If X
E M(n, F), we denote by X* and X* the transpose and conjugate of X
respectively. We shall use {1, e, e, 83} to denote the basis of H
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(over R) and identify e; with the complex number +/(—1). For
simplicity we shall say that X;, - - -, X, in M(n, F) are independent
if the nontrivial linear combinations of these matrices with real
coefficients are nonsingular.

We first prove several lemmas.

LEMMA 1. Let K=Ao+61A1€M(n, C), where Ao, AIEM(n, R).
Then K 1s singular if and only if

(A" ~ 4 EM@2n, R
Al Ao) (€M (2n, R)

is singular.

LEMMA 2. Let Q=K +e.K.&EM(n, H), where K1, K:&EM(n, C).
Then Q is singular if and only if

(Kl —K: M
. K;) (€M (2n, )

1s singular.
LEmMMA 3. Let Q=A¢+ed1+ed:+e;A:EM(n, H), where A,, A,
Az, AsEM(n, R). Then Q is singular if and only if the matrix
Ay — A4, — A, A3
A, Ao As; A,
Ay —A; A4y — A,
—A; —A; A, A

(EM(4n, R))

is singular.
LEMMA 4. Fou w(n)+1=<F(n),for F=R, Cor H.

Lemmas 1 and 2 follow from comparison of the components of the
equation Xv=0, where v (#20)E F*and X& M (n, F), and Lemma 3 is
an immediate consequence of Lemmas 1 and 2. Lemma 4 follows
from the fact that if X€E M(n, Fu_»), then X has no nonzero real
eigenvalue.

LEMMA 5. Hiu(n) +2 S Ra_n(4n).

Proor. Let Q=4 ,+ead1+ed:+e4:& M(n, Hp) be nonsingular,
where A4; (=0, ---, 3)EM(n, R). Then Ay=4}, A;=—A4} for
1=1, 2, 3and by Lemma 3, the matrix
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A, Ay A3 —4,
—Ay, A4, A, A;
A; A4, —A4. A
—A4y Ad; —Ay — A4,

is nonsingular. Now the following matrices

0 0 I 0 0 0 0 I
0 0 0-—1I 0 0 I O

2 -1 0 0 of’ 0—-7 0 o}
0 I 0 0 -1 0 0 0O

where 0 and I are the #n X7 zero and identity matrices respectively,
are in M(4n, Ry.n) and they are independent. Thus Lemma 5 is
proved.

LEMMA 6. Ry(n) +2 S Hy_n(n).

Proor. Let 4 € M (n, Ry) be nonsingular. Then ¢;4 is nonsingular
and ed, e, e;I are in Hy.n(n) and they are independent. Thus
Lemma 6 is proved.

Now we prove Theorem 1. Since KEM(n, Cn) if and only if
elKE M(n, Ce-n), we have Cix_n(n) = Cu(n) = C(n) —1. From Lemmas
4 and 6 we have Ry(n)+2=<Hy n(n) SH(n)—1 (=Ru(n)+2). Hence
Hey w(n) =H(n)—1. From Lemmas 4 and 5 we have Hu(n)+2
SRx-n(4n) SR(4n) —1 (=Hu(n)+2). Hence R..n(4n)=R(4n)—1.
Now, if m is odd, then Rg.n(m)=0=R(m)—1, and 1 <R, _r(2m)
=<R(2m)—1=1. Hence R._n(n) =R(n)—1 for all » and Theorem 1
is proved.

In order to prove Theorem 2 we need the following lemmas.

LEMMA 7. Ry(n)+1=Ci(n).

Proor. Let A& M(n, Ry) be nonsingular. Then 4 and ¢l are in
M(n, C,) and they are independent.

LeMMA 8. Cy(n)+2 =< Hy(n).

Proor. Let KE M (n, C;) be nonsingular. Then K, e, eI are in
M(n, H,) and they are independent.

We now prove Theorem 2. By Lemmas 7 and 8 we have Ry(n) +1
SC(n)SH,(n)—2=<H(n)—2 (=Ru(n)+1). Hence all these in-
equalities are equalities. Since Ry(n) = Ry(#), Theorem 2 is proved.
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In order to prove Theorem 3 which is the difficult part of this note,
we need the following lemmas.
LEMMA 9. Hyp(n) 41 = Coroo(2n).

Proor. Let Q=K;+e,K.€ M(n, Hy) be nonsingular, where Kj,
K.&M(n, C). Then K;EM(n, Cw) and K, EM(n, Ci.,) and by

Lemma 2, the matrix
K. —Ki
(e %)
. K, K,
is nonsingular. Now since
(0,
an
- ell 0
are in M(2n, Cy-,) and they are independent, Lemma 9 is proved.

LeEmMMA 10. Cu—(n) +2 < R(2n).

ProoF. Let K=A4,+‘eA1€EM(n, Ci.,) be nonsingular, where
Ao, A1EM(n, R). Then by Lemma 1

(A o —4 1)
Ay A,
is nonsingular. Now since

G 72y Con) = Go)
, and
A, Ao 0 7 I 0
are in M(2n, R) and they are independent, Lemma 10 is proved.

LEMMA 11. Cu_s(n) +6 < Hyxs(4n).

ProoF. Let KEM(n, Cix-,) be nonsingular. Then the following
matrices

K 0 0 0 0 el 0 O 0—el 0 0
0 K 0 0 —e 0 0 O esI 0 0 0
0 0K O|’"] 0 0 0 eI|l” [0 0 0 &)
0 0 0 K 0 0—el O 0 0—el O

0 0 el O 0 0—el O

0 0 0—el 0 0 0—el

—ef 0 0 0| |eaf 0 0 O]’

0 el 0 O, 0 e/ 0 O



1971] MATRICES WITH NONTRIVIAL REAL LINEAR COMBINATIONS 21

0 0 0 —el 0 0 0 el
0 0 —ed O 0 O0—el O
0 e 0 0]’ 0 el 0 O

el 0 0 O —el 0 0 O

are in M(4n, H,._,), and, by direct calculation, they are independent.
Thus Lemma 11 is proved.

LEMMA 12. Hg_(m) =4 1f m is odd and greater than 1.

Proor. If m is odd, then Hu.,(m)<H(m)=4. From this it is
obvious that H.x_o(m) £ Hyx—y(m-+2). Let

0 1 e 0 € 0
Q=|-1 0 —-1|+e|—e O e
—e1 1 0 0 —e1 0

Then Q& M (3, Hy-,) and by using Lemma 2 it can be verified that Q
is nonsingular. Now Q, e1Q, e:Q, e;Q are in M (3, H,.,) and they are
independent. Hence Hy.,(3) =4 and the lemma is proved.

LeEMMA 13. Hy.s(n) +1 = Hy o (2n).
ProoF. Let Q& M (n, Hyx.,) be nonsingular. Then

(6 -¢)
(o)

are in M(2n, H,,) and they are independent. Thus Lemma 13 is
proved.

We now prove Theorem 3. From Lemmas 9 and 10 we have Hy(%)
+1=Cixs(2n) SR(4n)—2 (=Hy(n)+1). Hence Cu.(2n)=R(4n)
—2. If m is odd, then Cu_,(m)=0=R(2m)—2. Hence Cyu-s(n)
=R(2n)—2 for all n. From this and Lemma 11 we have R(2xn)+4
=Cox-2(n) +6 S Hyx-o(4n) (SH(4n)). Hence Hyx.o(4n) =H(4n). If m
is odd and >1, then, by Lemma 12, Hy_,(m) =4=H(m), and, by
Lemma 13, we have 5=H,x_,(m)+1=<H,._,(2m) SH(2m) =5. Hence
Hy (n)=H(n) (=R(8n) —4) for all n>2. Itis obvious that H,_(1)
=0 and H-,(2)=4. By Theorem 1 we have R, ,(n)=Rx-n(n)
=R(n)—1. Thus Theorem 3 is completely proved.

and
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