ON MATRICES WHOSE NONTRIVIAL REAL LINEAR COMBINATIONS ARE NONSINGULAR

YIK-HOI AU-YEUNG ${ }^{1}$

Abstract

Let F be the real field R, the complex field C, or the skew field H of quaternions, and $d(F)$ the real dimension of F. We shall write $F(n)$ (resp. $F_{x}(n)$) for the maximum number of $n \times n$ matrices (resp. $n \times n$ matrices with property x) with elements in F whose nontrivial linear combinations with real coefficients are nonsingular and x will stand for hermitian (h), skew-hermitian (sk-h), symmetric (s), or skew-symmetric (sk-s). If n is a positive integer, we write $n=(2 a+1) 2^{b}$, where $b=c+4 d$ and a, b, c, d are nonnegative integers with $0 \leqq c<4$, and define the Hurwitz-Radon function ρ of n as $\rho(n)=2^{c}+8 d$. It is known [1], [2] that

$$
\begin{gathered}
R(n)=\rho(n), C(n)=2 b+2, H(n)=\rho\left(\frac{1}{2} n\right)+4, \\
F_{h}(n)=\mathrm{F}\left(\frac{1}{2} n\right)+1, \text { for } F=R, C \text { or } H,
\end{gathered}
$$

where $\rho\left(\frac{1}{2} n\right)=F\left(\frac{1}{2} n\right)=0$ if n is odd. In this note we use these known results to prove the following theorems.

Theorem 1. $F_{\mathrm{sk}-\mathrm{h}}(n)=F(n)-1$, for $F=R, C$ or H.
Theorem 2. $F_{s}(n)=\rho\left(\frac{1}{2} n\right)+d(F)$, for $F=R, C$ or H.
Theorem 3. $F_{\mathrm{sk}-\mathrm{s}}(n)=\rho\left(2^{d(F)-1} n\right)-d(F)$, if $F=R$ or C or $F=H$ and $n>2$ and $H_{\mathrm{sk}-\mathrm{s}}(1)=0, H_{\mathrm{sk}-\mathrm{s}}(2)=4$.

Corollary. $H_{\mathrm{s}}(n)=H(n)$ for all $n ; H_{\mathrm{sk}-\mathrm{s}}(n)=H(n)$ for all $n>2$.
From the above results, it may be interesting to note that $F_{\mathrm{h}}(n)$ and $F_{\mathrm{sk}-\mathrm{h}}(n)$ can be expressed by the function $F(m)$, while $F_{\mathrm{s}}(n)$ and $F_{\mathrm{sk}-\mathrm{s}}(n)$ can be expressed by ρ and $d(F)$ except for two exceptional cases ($H_{\mathrm{sk}-\mathrm{s}}(1)$ and $H_{\mathrm{sk}-\mathrm{s}}(2)$). The corollary follows immediately from Theorems 2 and 3, the expression of $H(n)$, and the fact that $\rho(8 n)=\rho\left(\frac{1}{2} n\right)+8$.

We denote by $M(n, F)$ (resp. $M\left(n, F_{x}\right)$) the set of all $n \times n$ matrices (resp. $n \times n$ matrices with property x) with elements in F. If X $\in M(n, F)$, we denote by X^{t} and X^{c} the transpose and conjugate of X respectively. We shall use $\left\{1, e_{1}, e_{2}, e_{3}\right\}$ to denote the basis of H

Received by the editors January 17, 1970.
AMS 1970 subject classifications. Primary 15A30, 15A57; Secondary 15A33.
Key words and phrases. Hurwitz-Radon function, maximum independent set of matrices over the real field.
${ }^{1}$ The author wishes to thank Professor Y. C. Wong for his advice during the preparation of this note.
(over R) and identify e_{1} with the complex number $\sqrt{ }(-1)$. For simplicity we shall say that X_{1}, \cdots, X_{p} in $M(n, F)$ are independent if the nontrivial linear combinations of these matrices with real coefficients are nonsingular.

We first prove several lemmas.
Lemma 1. Let $K=A_{0}+e_{1} A_{1} \in M(n, C)$, where $A_{0}, A_{1} \in M(n, R)$. Then K is singular if and only if

$$
\left(\begin{array}{rr}
A_{0} & -A_{1} \\
A_{1} & A_{0}
\end{array}\right) \quad(\in M(2 n, R))
$$

is singular.
Lemma 2. Let $Q=K_{1}+e_{2} K_{2} \in M(n, H)$, where $K_{1}, K_{2} \in M(n, C)$. Then Q is singular if and only if

$$
\left(\begin{array}{rr}
K_{1} & -K_{2}^{c} \\
K_{2} & K_{1}^{c}
\end{array}\right) \quad(\in M(2 n, C))
$$

is singular.
Lemma 3. Let $Q=A_{0}+e_{1} A_{1}+e_{2} A_{2}+e_{3} A_{3} \in M(n, H)$, where A_{0}, A_{1}, $A_{2}, A_{3} \in M(n, R)$. Then Q is singular if and only if the matrix

$$
\left(\begin{array}{rrr}
A_{0}-A_{2}-A_{1} & A_{3} \\
A_{2} & A_{0} & A_{3}
\end{array} A_{1} \quad(\quad(\in M(4 n, R))\right.
$$

is singular.
Lemma 4. $F_{\mathrm{sk}-\mathrm{h}}(n)+1 \leqq F(n)$, for $F=R$, Cor H.
Lemmas 1 and 2 follow from comparison of the components of the equation $X v=0$, where $v(\neq 0) \in F^{n}$ and $X \in M(n, F)$, and Lemma 3 is an immediate consequence of Lemmas 1 and 2. Lemma 4 follows from the fact that if $X \in M\left(n, F_{\mathrm{sk}-\mathrm{h}}\right)$, then X has no nonzero real eigenvalue.

Lemma 5. $H_{\mathrm{h}}(n)+2 \leqq R_{\mathrm{sk}-\mathrm{h}}(4 n)$.
Proof. Let $Q=A_{0}+e_{1} A_{1}+e_{2} A_{2}+e_{3} A_{3} \in M\left(n, H_{\mathrm{h}}\right)$ be nonsingular, where $A_{i}(i=0, \cdots, 3) \in M(n, R)$. Then $A_{0}=A_{0}^{t}, A_{i}=-A_{i}^{t}$ for $i=1,2,3$ and by Lemma 3, the matrix

$$
\tilde{Q}=\left(\begin{array}{rlrr}
A_{2} & A_{0} & A_{3} & -A_{1} \\
-A_{0} & A_{2} & A_{1} & A_{3} \\
A_{3} & A_{1} & -A_{2} & A_{0} \\
-A_{1} & A_{3} & -A_{0}-A_{2}
\end{array}\right)
$$

is nonsingular. Now the following matrices

$$
\tilde{Q}, \quad\left(\begin{array}{rrrr}
0 & 0 & I & 0 \\
0 & 0 & 0 & -I \\
-I & 0 & 0 & 0 \\
0 & I & 0 & 0
\end{array}\right), \quad\left(\begin{array}{rrrr}
0 & 0 & 0 & I \\
0 & 0 & I & 0 \\
0 & -I & 0 & 0 \\
-I & 0 & 0 & 0
\end{array}\right),
$$

where 0 and I are the $n \times n$ zero and identity matrices respectively, are in $M\left(4 n, R_{\mathrm{sk}-\mathrm{h}}\right)$ and they are independent. Thus Lemma 5 is proved.

Lemma 6. $R_{\mathrm{h}}(n)+2 \leqq H_{\mathrm{sk}-\mathrm{b}}(n)$.
Proof. Let $A \in M\left(n, R_{\mathrm{h}}\right)$ be nonsingular. Then $e_{1} A$ is nonsingular and $e_{1} A, e_{2} I, e_{3} I$ are in $H_{\mathrm{sk}-\mathrm{h}}(n)$ and they are independent. Thus Lemma 6 is proved.

Now we prove Theorem 1. Since $K \in M\left(n, C_{\mathrm{h}}\right)$ if and only if $e_{1} K \in M\left(n, C_{\text {sk-h }}\right)$, we have $C_{\text {sk-h }}(n)=C_{\mathrm{h}}(n)=C(n)-1$. From Lemmas 4 and 6 we have $R_{\mathrm{h}}(n)+2 \leqq H_{\mathrm{sk}-\mathrm{h}}(n) \leqq H(n)-1\left(=R_{\mathrm{h}}(n)+2\right)$. Hence $H_{\mathrm{sk}-\mathrm{h}}(n)=H(n)-1$. From Lemmas 4 and 5 we have $H_{\mathrm{h}}(n)+2$ $\leqq R_{\text {sk-h }}(4 n) \leqq R(4 n)-1 \quad\left(=H_{\mathrm{h}}(n)+2\right)$. Hence $R_{\mathrm{sk}-\mathrm{h}}(4 n)=R(4 n)-1$. Now, if m is odd, then $R_{\mathrm{sk}-\mathrm{h}}(m)=0=R(m)-1$, and $1 \leqq R_{\mathrm{sk}-\mathrm{h}}(2 m)$ $\leqq R(2 m)-1=1$. Hence $R_{\text {sk-h }}(n)=R(n)-1$ for all n and Theorem 1 is proved.

In order to prove Theorem 2 we need the following lemmas.
Lemma 7. $R_{\mathrm{h}}(n)+1 \leqq C_{\mathrm{s}}(n)$.
Proof. Let $A \in M\left(n, R_{\mathrm{h}}\right)$ be nonsingular. Then A and $e_{1} I$ are in $M\left(n, C_{s}\right)$ and they are independent.

Lemma 8. $C_{\mathrm{s}}(n)+2 \leqq H_{\mathrm{s}}(n)$.
Proof. Let $K \in M\left(n, C_{8}\right)$ be nonsingular. Then $K, e_{2} I, e_{3} I$ are in $M\left(n, H_{8}\right)$ and they are independent.

We now prove Theorem 2. By Lemmas 7 and 8 we have $R_{\mathrm{h}}(n)+1$ $\leqq C_{\mathrm{s}}(n) \leqq H_{\mathrm{s}}(n)-2 \leqq H(n)-2 \quad\left(=R_{\mathrm{b}}(n)+1\right)$. Hence all these inequalities are equalities. Since $R_{s}(n)=R_{\mathrm{h}}(n)$, Theorem 2 is proved.

In order to prove Theorem 3 which is the difficult part of this note, we need the following lemmas.

Lemma 9. $H_{\mathrm{h}}(n)+1 \leqq C_{\mathrm{sk}-\mathrm{s}}(2 n)$.
Proof. Let $Q=K_{1}+e_{2} K_{2} \in M\left(n, H_{\mathrm{h}}\right)$ be nonsingular, where K_{1}, $K_{2} \in M(n, C)$. Then $K_{1} \in M\left(n, C_{\mathrm{h}}\right)$ and $K_{2} \in M\left(n, C_{\mathrm{sk}-\mathrm{s}}\right)$ and by Lemma 2, the matrix
is nonsingular. Now since

$$
\bar{Q} \text { and }\left(\begin{array}{cc}
0 & e_{1} I \\
-e_{1} I & 0
\end{array}\right)
$$

are in $M\left(2 n, C_{s k-s}\right)$ and they are independent, Lemma 9 is proved.
Lemma 10. $C_{\mathrm{sk}-\mathrm{s}}(n)+2 \leqq R(2 n)$.
Proof. Let $K=A_{0}+e_{1} A_{1} \in M\left(n, C_{\mathrm{sk}-\mathrm{s}}\right)$ be nonsingular, where $A_{0}, A_{1} \in M(n, R)$. Then by Lemma 1

$$
\left(\begin{array}{rr}
A_{0} & -A_{1} \\
A_{1} & A_{0}
\end{array}\right)
$$

is nonsingular. Now since

$$
\left(\begin{array}{rr}
A_{0} & -A_{1} \\
A_{1} & A_{0}
\end{array}\right), \quad\left(\begin{array}{rr}
-I & 0 \\
0 & I
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)
$$

are in $M(2 n, R)$ and they are independent, Lemma 10 is proved.
Lemma 11. $C_{\mathrm{sk}-\mathrm{s}}(n)+6 \leqq H_{\mathrm{sk}-\mathrm{s}}(4 n)$.
Proof. Let $K \in M\left(n, C_{s k-s}\right)$ be nonsingular. Then the following matrices

$$
\begin{aligned}
& \left(\begin{array}{cccc}
K & 0 & 0 & 0 \\
0 & K & 0 & 0 \\
0 & 0 & K & 0 \\
0 & 0 & 0 & K
\end{array}\right),\left(\begin{array}{cccc}
0 & e_{2} I & 0 & 0 \\
-e_{2} I & 0 & 0 & 0 \\
0 & 0 & 0 & e_{2} I \\
0 & 0 & -e_{2} I & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & -e_{3} I & 0 & 0 \\
e_{3} I & 0 & 0 & 0 \\
0 & 0 & 0 & e_{3} I \\
0 & 0 & -e_{3} I & 0
\end{array}\right), \\
& \left(\begin{array}{cccc}
0 & 0 & e_{2} I & 0 \\
0 & 0 & 0 & -e_{2} I \\
-e_{2} I & 0 & 0 & 0 \\
0 & e_{2} I & 0 & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 0 & -e_{3} I & 0 \\
0 & 0 & 0 & -e_{3} I \\
e_{3} I & 0 & 0 & 0 \\
0 & e_{3} I & 0 & 0
\end{array}\right),
\end{aligned}
$$

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & -e_{2} I \\
0 & 0 & -e_{2} I & 0 \\
0 & e_{2} I & 0 & 0 \\
e_{2} I & 0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{cccc}
0 & 0 & 0 & e_{3} I \\
0 & 0 & -e_{3} I & 0 \\
0 & e_{3} I & 0 & 0 \\
-e_{3} I & 0 & 0 & 0
\end{array}\right)
$$

are in $M\left(4 n, H_{\mathrm{sk}-\mathrm{s}}\right)$, and, by direct calculation, they are independent. Thus Lemma 11 is proved.

Lemma 12. $H_{\mathrm{sk}-\mathrm{s}}(m)=4$ if m is odd and greater than 1.
Proof. If m is odd, then $H_{\mathbf{s k}-\mathrm{s}}(m) \leqq H(m)=4$. From this it is obvious that $H_{\text {sk- }}(m) \leqq H_{\mathrm{sk}-\mathrm{s}}(m+2)$. Let

$$
Q=\left(\begin{array}{ccc}
0 & 1 & e_{1} \\
-1 & 0 & -1 \\
-e_{1} & 1 & 0
\end{array}\right)+e_{2}\left(\begin{array}{ccc}
0 & e_{1} & 0 \\
-e_{1} & 0 & e_{1} \\
0 & -e_{1} & 0
\end{array}\right)
$$

Then $Q \in M\left(3, H_{s k-s}\right)$ and by using Lemma 2 it can be verified that Q is nonsingular. Now $Q, e_{1} Q, e_{2} Q, e_{3} Q$ are in $M\left(3, H_{s k-s}\right)$ and they are independent. Hence $H_{s k-s}(3) \geqq 4$ and the lemma is proved.

Lemma 13. $H_{s k-s}(n)+1 \leqq H_{s k-s}(2 n)$.
Proof. Let $Q \in M\left(n, H_{\mathrm{sk}-\mathrm{s}}\right)$ be nonsingular. Then

$$
\left(\begin{array}{rr}
Q & 0 \\
0 & -Q^{c}
\end{array}\right)
$$

and

$$
\left(\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right)
$$

are in $M\left(2 n, H_{s k-a}\right)$ and they are independent. Thus Lemma 13 is proved.

We now prove Theorem 3. From Lemmas 9 and 10 we have $H_{\mathrm{h}}(n)$ $+1 \leqq C_{\mathrm{sk}-\mathrm{s}}(2 n) \leqq R(4 n)-2 \quad\left(=H_{\mathrm{h}}(n)+1\right)$. Hence $C_{\mathrm{sk}-\mathrm{s}}(2 n)=R(4 n)$ -2. If m is odd, then $C_{\mathrm{sk}-\mathrm{s}}(m)=0=R(2 m)-2$. Hence $C_{\mathrm{sk}-\mathrm{s}}(n)$ $=R(2 n)-2$ for all n. From this and Lemma 11 we have $R(2 n)+4$ $=C_{\mathrm{sk}-\mathrm{s}}(n)+6 \leqq H_{\mathrm{sk}-\mathrm{s}}(4 n)(\leqq H(4 n))$. Hence $H_{\mathrm{sk}-\mathrm{s}}(4 n)=H(4 n)$. If m is odd and >1, then, by Lemma 12, $H_{\mathrm{sk}-\mathrm{s}}(m)=4=H(m)$, and, by Lemma 13, we have $5=H_{\text {sk-s }}(m)+1 \leqq H_{\text {ak-s }}(2 m) \leqq H(2 m)=5$. Hence $H_{\mathrm{sk}-\mathrm{s}}(n)=H(n)(=R(8 n)-4)$ for all $n>2$. It is obvious that $H_{\mathrm{sk}-\mathrm{s}}(1)$ $=0$ and $H_{\mathrm{ak}-\mathrm{s}}(2)=4$. By Theorem 1 we have $R_{\mathrm{sk}-\mathrm{s}}(n)=R_{\mathrm{sk}-\mathrm{h}}(n)$ $=R(n)-1$. Thus Theorem 3 is completely proved.

References

1. J. F. Adams, Peter D. Lax and Ralph S. Phillips, On matrices whose real linear combinations are nonsingular, Proc. Amer. Math. Soc. 16 (1965), 318-322. MR 31 \#3432.
2. --, Correction to "On matrices whose real linear combinations are nonsingular," Proc. Amer. Math. Soc. 17 (1966), 945-947. MR 34 \#1344.

University of Hong Kong, Hong Kong

