ON MATRICES WHOSE NONTRIVIAL REAL LINEAR COMBINATIONS ARE NONSINGULAR

YIK-HOI AU-YEUNG¹

ABSTRACT. Let F be the real field R, the complex field C, or the skew field H of quaternions, and d(F) the real dimension of F. We shall write F(n) (resp. $F_x(n)$) for the maximum number of $n \times n$ matrices (resp. $n \times n$ matrices with property x) with elements in F whose nontrivial linear combinations with real coefficients are nonsingular and x will stand for hermitian (h), skew-hermitian (sk-h), symmetric (s), or skew-symmetric (sk-s). If n is a positive integer, we write $n = (2a+1)2^b$, where b = c+4d and a, b, c, d are nonnegative integers with $0 \le c < 4$, and define the Hurwitz-Radon function ρ of n as $\rho(n) = 2^c + 8d$. It is known [1], [2] that

> $R(n) = \rho(n), C(n) = 2b + 2, H(n) = \rho(\frac{1}{2}n) + 4,$ $F_h(n) = F(\frac{1}{2}n) + 1, \text{ for } F = R, C \text{ or } H,$

where $\rho(\frac{1}{2}n) = F(\frac{1}{2}n) = 0$ if *n* is odd. In this note we use these known results to prove the following theorems.

THEOREM 1. $F_{sk-h}(n) = F(n) - 1$, for F = R, C or H.

THEOREM 2. $F_s(n) = \rho(\frac{1}{2}n) + d(F)$, for F = R, C or H.

THEOREM 3. $F_{sk-s}(n) = \rho(2^{d(F)-1}n) - d(F)$, if F = R or C or F = H and n > 2 and $H_{sk-s}(1) = 0$, $H_{sk-s}(2) = 4$.

COROLLARY. $H_{s}(n) = H(n)$ for all n; $H_{sk-s}(n) = H(n)$ for all n > 2.

From the above results, it may be interesting to note that $F_h(n)$ and $F_{sk-h}(n)$ can be expressed by the function F(m), while $F_s(n)$ and $F_{sk-s}(n)$ can be expressed by ρ and d(F) except for two exceptional cases $(H_{sk-s}(1) \text{ and } H_{sk-s}(2))$. The corollary follows immediately from Theorems 2 and 3, the expression of H(n), and the fact that $\rho(8n) = \rho(\frac{1}{2}n) + 8$.

We denote by M(n, F) (resp. $M(n, F_x)$) the set of all $n \times n$ matrices (resp. $n \times n$ matrices with property x) with elements in F. If $X \in M(n, F)$, we denote by X^t and X^c the transpose and conjugate of X respectively. We shall use $\{1, e_1, e_2, e_3\}$ to denote the basis of H

AMS 1970 subject classifications. Primary 15A30, 15A57; Secondary 15A33.

Copyright @ 1971, American Mathematical Society

Received by the editors January 17, 1970.

Key words and phrases. Hurwitz-Radon function, maximum independent set of matrices over the real field.

¹ The author wishes to thank Professor Y. C. Wong for his advice during the preparation of this note.

(over R) and identify e_1 with the complex number $\sqrt{(-1)}$. For simplicity we shall say that X_1, \dots, X_p in M(n, F) are *independent* if the nontrivial linear combinations of these matrices with real coefficients are nonsingular.

We first prove several lemmas.

LEMMA 1. Let $K = A_0 + e_1A_1 \in M(n, C)$, where $A_0, A_1 \in M(n, R)$. Then K is singular if and only if

$$\begin{pmatrix} A_0 & -A_1 \\ A_1 & A_0 \end{pmatrix} \quad (\in M(2n, R))$$

is singular.

LEMMA 2. Let $Q = K_1 + e_2 K_2 \in M(n, H)$, where K_1 , $K_2 \in M(n, C)$. Then Q is singular if and only if

$$\binom{K_1 - K_2^{\circ}}{K_2 - K_1^{\circ}} \quad (\in M(2n, C))$$

is singular.

LEMMA 3. Let $Q = A_0 + e_1A_1 + e_2A_2 + e_3A_3 \in M(n, H)$, where $A_0, A_1, A_2, A_3 \in M(n, R)$. Then Q is singular if and only if the matrix

$$\begin{pmatrix} A_0 - A_2 - A_1 & A_3 \\ A_2 & A_0 & A_3 & A_1 \\ A_1 - A_3 & A_0 - A_2 \\ - A_3 - A_1 & A_2 & A_0 \end{pmatrix} \qquad (\in M(4n, R))$$

is singular.

LEMMA 4.
$$F_{\mathbf{sk-h}}(n) + 1 \leq F(n)$$
, for $F = R$, C or H.

Lemmas 1 and 2 follow from comparison of the components of the equation Xv = 0, where $v \ (\neq 0) \in F^n$ and $X \in M(n, F)$, and Lemma 3 is an immediate consequence of Lemmas 1 and 2. Lemma 4 follows from the fact that if $X \in M(n, F_{sk-h})$, then X has no nonzero real eigenvalue.

LEMMA 5. $H_h(n) + 2 \leq R_{sk-h}(4n)$.

PROOF. Let $Q = A_0 + e_1A_1 + e_2A_2 + e_3A_3 \in M(n, H_h)$ be nonsingular, where A_i $(i=0, \dots, 3) \in M(n, R)$. Then $A_0 = A_0^i$, $A_i = -A_i^i$ for i=1, 2, 3 and by Lemma 3, the matrix

$$\tilde{Q} = \begin{pmatrix} A_2 & A_0 & A_3 & -A_1 \\ -A_0 & A_2 & A_1 & A_3 \\ A_3 & A_1 & -A_2 & A_0 \\ -A_1 & A_3 & -A_0 & -A_2 \end{pmatrix}$$

is nonsingular. Now the following matrices

$$\tilde{Q}, \qquad \begin{pmatrix} 0 & 0 & I & 0 \\ 0 & 0 & 0 & -I \\ -I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} 0 & 0 & 0 & I \\ 0 & 0 & I & 0 \\ 0 & -I & 0 & 0 \\ -I & 0 & 0 & 0 \end{pmatrix},$$

where 0 and I are the $n \times n$ zero and identity matrices respectively, are in $M(4n, R_{sk-h})$ and they are independent. Thus Lemma 5 is proved.

LEMMA 6. $R_{h}(n) + 2 \leq H_{sk-h}(n)$.

PROOF. Let $A \in M(n, R_h)$ be nonsingular. Then e_1A is nonsingular and e_1A , e_2I , e_3I are in $H_{sk-h}(n)$ and they are independent. Thus Lemma 6 is proved.

Now we prove Theorem 1. Since $K \in M(n, C_h)$ if and only if $e_1K \in M(n, C_{sk-h})$, we have $C_{sk-h}(n) = C_h(n) = C(n) - 1$. From Lemmas 4 and 6 we have $R_h(n) + 2 \leq H_{sk-h}(n) \leq H(n) - 1$ ($= R_h(n) + 2$). Hence $H_{sk-h}(n) = H(n) - 1$. From Lemmas 4 and 5 we have $H_h(n) + 2 \leq R_{sk-h}(4n) \leq R(4n) - 1$ ($= H_h(n) + 2$). Hence $R_{sk-h}(4n) = R(4n) - 1$. Now, if *m* is odd, then $R_{sk-h}(m) = 0 = R(m) - 1$, and $1 \leq R_{sk-h}(2m) \leq R(2m) - 1 = 1$. Hence $R_{sk-h}(n) = R(n) - 1$ for all *n* and Theorem 1 is proved.

In order to prove Theorem 2 we need the following lemmas.

LEMMA 7. $R_{\rm h}(n) + 1 \leq C_{\rm s}(n)$.

PROOF. Let $A \in M(n, R_h)$ be nonsingular. Then A and e_1I are in $M(n, C_s)$ and they are independent.

LEMMA 8. $C_s(n) + 2 \leq H_s(n)$.

PROOF. Let $K \in M(n, C_s)$ be nonsingular. Then K, e_2I , e_3I are in $M(n, H_s)$ and they are independent.

We now prove Theorem 2. By Lemmas 7 and 8 we have $R_h(n) + 1 \le C_s(n) \le H_s(n) - 2 \le H(n) - 2$ (= $R_h(n) + 1$). Hence all these inequalities are equalities. Since $R_s(n) = R_h(n)$, Theorem 2 is proved.

In order to prove Theorem 3 which is the difficult part of this note, we need the following lemmas.

LEMMA 9. $H_h(n) + 1 \leq C_{sk-s}(2n)$.

PROOF. Let $Q = K_1 + e_2 K_2 \in M(n, H_h)$ be nonsingular, where K_1 , $K_2 \in M(n, C)$. Then $K_1 \in M(n, C_h)$ and $K_2 \in M(n, C_{sk-s})$ and by Lemma 2, the matrix

$$\tilde{Q} = \begin{pmatrix} K_2 & -K_1^e \\ K_1 & K_2^e \end{pmatrix}$$

is nonsingular. Now since
 \tilde{Q} and $\begin{pmatrix} 0 & e_1 I \\ -e_1 I & 0 \end{pmatrix}$

are in $M(2n, C_{sk-s})$ and they are independent, Lemma 9 is proved.

LEMMA 10. $C_{sk-s}(n) + 2 \leq R(2n)$.

PROOF. Let $K = A_0 + e_1 A_1 \in M(n, C_{sk-s})$ be nonsingular, where $A_0, A_1 \in M(n, R)$. Then by Lemma 1

$$\begin{pmatrix} A_0 & -A_1 \\ A_1 & A_0 \end{pmatrix}$$

is nonsingular. Now since

$$\begin{pmatrix} A_0 & -A_1 \\ A_1 & A_0 \end{pmatrix}, \quad \begin{pmatrix} -I & 0 \\ 0 & I \end{pmatrix} \text{ and } \begin{pmatrix} 0 & I \\ I & 0 \end{pmatrix}$$

are in M(2n, R) and they are independent, Lemma 10 is proved.

LEMMA 11. $C_{sk-s}(n) + 6 \leq H_{sk-s}(4n)$.

PROOF. Let $K \in M(n, C_{sk-s})$ be nonsingular. Then the following matrices

$$\begin{pmatrix} K & 0 & 0 & 0 \\ 0 & K & 0 & 0 \\ 0 & 0 & K & 0 \\ 0 & 0 & 0 & K \end{pmatrix}^{\prime}, \begin{pmatrix} 0 & e_{2}I & 0 & 0 \\ -e_{2}I & 0 & 0 & 0 \\ 0 & 0 & 0 & e_{2}I \\ 0 & 0 - e_{2}I & 0 \end{pmatrix}^{\prime}, \begin{pmatrix} 0 - e_{3}I & 0 & 0 \\ e_{3}I & 0 & 0 & 0 \\ 0 & 0 & 0 & e_{3}I \\ 0 & 0 - e_{3}I & 0 \end{pmatrix}^{\prime}, \begin{pmatrix} 0 & 0 - e_{3}I & 0 \\ 0 & 0 & 0 & e_{3}I \\ 0 & 0 - e_{3}I & 0 \end{pmatrix}^{\prime}, \\ \begin{pmatrix} 0 & 0 & e_{2}I & 0 \\ 0 & 0 & 0 - e_{2}I \\ -e_{2}I & 0 & 0 & 0 \\ 0 & e_{2}I & 0 & 0 \end{pmatrix}^{\prime}, \begin{pmatrix} 0 & 0 - e_{3}I & 0 \\ 0 & 0 & 0 - e_{3}I \\ e_{3}I & 0 & 0 & 0 \\ 0 & e_{3}I & 0 & 0 \end{pmatrix}^{\prime},$$

20

0	0	0 -	$-e_2I$		0	0	0	e3I
0	0	$-e_2I$	0		0	0 -	-e ₃ I	0
0	e_2I	0	0	,	0	e ₃ I	0	0
e_2I	0	0	0		$-e_3I$	0	0	0)

are in $M(4n, H_{sk-s})$, and, by direct calculation, they are independent. Thus Lemma 11 is proved.

LEMMA 12. $H_{sk-s}(m) = 4$ if m is odd and greater than 1.

PROOF. If *m* is odd, then $H_{sk-s}(m) \leq H(m) = 4$. From this it is obvious that $H_{sk-s}(m) \leq H_{sk-s}(m+2)$. Let

$$Q = \begin{pmatrix} 0 & 1 & e_1 \\ -1 & 0 & -1 \\ -e_1 & 1 & 0 \end{pmatrix} + e_2 \begin{pmatrix} 0 & e_1 & 0 \\ -e_1 & 0 & e_1 \\ 0 & -e_1 & 0 \end{pmatrix}.$$

Then $Q \in M(3, H_{sk-s})$ and by using Lemma 2 it can be verified that Q is nonsingular. Now Q, e_1Q , e_2Q , e_3Q are in $M(3, H_{sk-s})$ and they are independent. Hence $H_{sk-s}(3) \ge 4$ and the lemma is proved.

LEMMA 13. $H_{sk-s}(n) + 1 \leq H_{sk-s}(2n)$.

PROOF. Let $Q \in M(n, H_{sk-s})$ be nonsingular. Then

$$\begin{pmatrix} Q & 0 \\ 0 & -Q^{e} \end{pmatrix}$$

and

$$\begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$$

are in $M(2n, H_{sk-s})$ and they are independent. Thus Lemma 13 is proved.

We now prove Theorem 3. From Lemmas 9 and 10 we have $H_h(n)$ +1 $\leq C_{sk-s}(2n) \leq R(4n) - 2$ (= $H_h(n)$ +1). Hence $C_{sk-s}(2n) = R(4n)$ -2. If *m* is odd, then $C_{sk-s}(m) = 0 = R(2m) - 2$. Hence $C_{sk-s}(n) = R(2n) - 2$ for all *n*. From this and Lemma 11 we have $R(2n) + 4 = C_{sk-s}(n) + 6 \leq H_{sk-s}(4n)$ ($\leq H(4n)$). Hence $H_{sk-s}(4n) = H(4n)$. If *m* is odd and >1, then, by Lemma 12, $H_{sk-s}(m) = 4 = H(m)$, and, by Lemma 13, we have $5 = H_{sk-s}(m) + 1 \leq H_{sk-s}(2m) \leq H(2m) = 5$. Hence $H_{sk-s}(n) = H(n)$ (=R(8n) - 4) for all n > 2. It is obvious that $H_{sk-s}(1) = 0$ and $H_{sk-s}(2) = 4$. By Theorem 1 we have $R_{sk-s}(n) = R_{sk-h}(n) = R(n) - 1$. Thus Theorem 3 is completely proved.

YIK-HOI AU-YEUNG

References

1. J. F. Adams, Peter D. Lax and Ralph S. Phillips, On matrices whose real linear combinations are nonsingular, Proc. Amer. Math. Soc. 16 (1965), 318-322. MR 31 #3432.

2. ——, Correction to "On matrices whose real linear combinations are nonsingular," Proc. Amer. Math. Soc. 17 (1966), 945–947. MR 34 #1344.

UNIVERSITY OF HONG KONG, HONG KONG