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ABSTRACT. A group 4 of automorphisms on a group G is said to
be fixed-point-free, written f.p.f., if Ce(4)= {g€G| ge=g for all
a«EA} =1 It has been shown by E. Shult that if 4 is an abelian
f.p.f coprime group of automorphisms of order n=p{1 - « - pfkon a
solvable group G, then the nilpotent length of G is bounded above
by v(n) =2 =% a; unless |G| is divisible by primes ¢ such that
¢*+1=d where d divides the exponent ¢ of 4. F. Gross has removed
the exceptional condition on the prime divisors of |G| when 4 is
cyclic of order p#, p an odd prime. In the case where 4 is noncyclic
of order p?, the author has also removed the exceptional condition
on the prime divisors of | G]|.

E. Shult [6] has established the following result.

THEOREM. Let A be an abelian f.p.f. group of automorphisms of
order n=2p¢ - - - pt* on a solvable group G where I G| is coprime to |A| .
If | G| 15 not divisible by primes q such that ¢*+1 =d where d divides the
exponent ¢ of A, then the nilpotent length of G is bounded above by

¥(n)= Zf—l a.

F. Gross [3] has removed the condition on the prime divisors of
|G| when 4 is cyclic of order p°, p an odd prime. In this paper, we
do the same when A4 is noncyclic of order 2, p an arbitrary prime.
This result has already been indicated—without proof—by Kurz-
weil [5]. It should be pointed out that the author has found a
counterexample, in the case where A is noncyclic of order p?, to
Theorem 4.1 of Shult [6] when the exceptional condition on the
prime divisors of | G| is removed.

1. Preliminaries. All groups under consideration are presumed to
be finite.

A group H is said to be an operator group on a group G if there
is a homomorphism ¢: H—A(G) where A(G) is the automorphism
group of G. In short, we say that H is an operator group of G. Let
h¢ be the image of % under ¢. We denote the image of g under k¢
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by g*¢, or simply by g* when we suppress the operator notation. We
denote the kernel of the representation as Cg(G) = {hEH l gh=g for
all gEG} . Also, we set Cq(H) = {gEGI gt=gfor all LEH}. H is said
to be fixed-point-free on G, written f.p.f., if Ce(H) =1.

We use the following results.

LEMMA 1.1. Let A be a coprime operator group on a solvable group G.
Then, there is an A-invariant Carter subgroup of G.

LEMMA 1.2. Let A be an abelian regular group of automorphisms on a
group G. Then, A is cyclic.

LeMMA 1.3. Let A be a coprime operator group on a group G. If Uisa
normal A-invariant subgroup of G, then Cqu(4)=Cqe(4)U/U.

LEMMA 1.4. Let A be a coprime operator group on a nilpotent group
G. If ®(G) is the Frattini subgroup of G and if 4(G) is the intersection
of all the maximal A-invariant subgroups of G, then ®(G) =P4(G).

LEMMA 1.5. Let G be the semidirect product of H over K and let ¢
be a representation of G on a vector space V/F. If h& H is contained in
the kernel of the representation, then h acts trivially on K/K, where K,
1s the kernel of the representation which V affords of K.

All of the above results are well known except possibly Lemmas
1.1 and 1.5. An adaptation of the argument used to prove Theorem
2.2(i), Chapter 6 in Gorenstein [2], yields Lemma 1.1 and the proof
of Lemma 1.5 is trivial.

2. Main results. Hereafter, we shall always denote a noncyclic
group of order p? as a group of type (p, p). Recall that if G is a group,
then 0,(G) denotes the largest normal subgroup of G which is a ¢-
group, ¢ a prime.

LEMMA 2.1. Let G={a)M be a Frobenius group where the Fro-
benius kernel M is abelian and || =p. If G has a representation on a
vector space V/ F where char(F)/ | G | and Cy(a) = (0), then Cy (M) £ (0).

ProoF. We may assume that F is a splitting field for all subgroups
of G.

Let W be an irreducible G-submodule of V. Since Cw (M) = Gy (M),
it suffices to consider the case where W= V. Now, it follows that if
U is an irreducible M-submodule of V, then U= Fu since F is a
splitting field for all subgroups of G and M is abelian. Now, if U<V,
then we have by Satz 17.10, Chapter V in Huppert [4], that V
=@ >°i=27! Fua’. But, this means that x= D 7-o ua’50 is fixed by
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a, a contradiction to Cy(a) =(0). Thus, it follows that U="V. It is
now immediate from the linearity of the representation that M must
act trivially on U=V since « is regular on M. Therefore, the proof
is complete.

LEMMA 2.2. Let A be a complement of type (p, p) to a normal Hall
abelian subgroup H of G. Assume that A contains an element o which is
regular on H. If y is an absolutely irreducible faithful representation of
G on a vector space V/F where char(F)/ I G|, then deg(y) =p if Cv(A)
=(0).

Proor. Let W be an irreducible H-submodule of V. We have that
W= Fw since V is an absolutely irreducible G-module and H is
abelian. Also, if H; is the kernel of the representation which W
affords for H, then H; < H since G is faithfully and irreducibly repre-
sented on V. Now, Wa# W since otherwise we would have from the
linearity of the representation that [e, H]<H;<H, a contradiction
to a being regular on H. Consequently, it follows from Satz 17.10,
Chapter V in Huppert [4], that U= > ?=5 Fwa’ where U is the
irreducible (a)H-submodule of V generated by W. In particular, we
have that dimpU=9. Thus, the proof will be completed when we
show that U=V. Assume that U<V. Then, dimgV>p. However,
this implies by Satz 17.10, cited above, that dimpV =p2 This means
that V=@ > 2= D> s Fwa'B’ where A ={(a, B). Hence, it follows
that x= 2 220 > 273 waiBi#0 is fixed by all elements of 4, a con-
tradiction to the assumption that Cy(4)=(0). Therefore, we are
forced to conclude that indeed deg(y¥) = and the proof is complete.

THEOREM 2.3. Let A be a self-normalizing complement of type (p, p)
to a normal Hall subgroup H of a solvable group G. Assume that G has
a faithful representation on a vector space V/F where O (H) =1 f
char(F) =¢#0. If A contains an element a such that Cy(a) = (0), then
aECa(H). In particular, H is nilpotent.

Proor. We argue by induction on | H|. The ground case occurs
when H is abelian and H= X%, U¥, where A={(a, 8) and U is a
minimal e-invariant subgroup of H. In particular, U is an elementary
abelian r-group where r (#¢) is a prime. Also, we have by Theorem
2.3, Chapter 6 in Gorenstein [2], that ps%g¢. It then follows by
Theorem 4.4, Chapter 3 in Gorenstein [2], that « centralizes each
UP and consequently H.

Let us assume that H is not nilpotent. Then, the Fitting subgroup
F=F(H) of H is properly contained in H. It is clear that the hypoth-
eses of the theorem are satisfied for A F. Thus, we have by induction



4 J. W. RICHARDS [June

that a EC4(F). We now claim that « acts trivially on H/Cu(F). Let
xEF. Then x*=x. Since Fis normal in H, it follows that x2=x& F.
So, we have x9=x9"" =x®a This clearly implies that [a~!, g!]
ECy(F). Thus, a acts trivially on H/Cx(F). Now, it is well known
that Cy(F) S F since H is solvable. Hence, a acts trivially on H/F.
It now follows from the fact that |@| =p is coprime to | H| that a cen-
tralizes H. Hence, we may assume that H is nilpotent.

Assume now that H contains two distinct maximal normal 4-
invariant subgroups, say M; and M,. Then, « centralizes M;, =1, 2,
by induction and consequently a centralizes H since H = M;M,.
Thus, we may assume that H contains a unique maximal normal 4-
invariant subgroup, say M. This says by Lemma 1.4 that M =®(H).
Also, we have that H is necessarily an r-group, 7 a prime, since that
Frattini subgroup contains no Hall subgroups of H. Now 4 cannot
be a regular group of automorphisms on H/M by Lemma 1.2. How-
ever, A acts irreducibly on H/M; thus, there is a y&A* which
centralizes H/M. This implies by Burnside’s result—cf., Theorem
1.4, Chapter 5 in Gorenstein [2]—that v centralizes H since |’y| =p
is coprime to ]H | Also, a centralizes M by induction. Hence, if
a7y’ then A centralizes M since a7%* implies that 4 ={«, v). But,
this contradicts the assumption that 4 is self-normalizing in G.
Therefore, v:=a and the proof is complete for a & C4(H). Now, if
A ={a, B), then B is regular on H since « centralizes H and 4 is f.p.f.
on H. Therefore, H is nilpotent by Thompson's result—cf., Theorem
2.1, Chapter 10 in Gorenstein [2]. This completes the proof of the
theorem.

Let A be a group of type (p, p) and let ¢ be a representation of 4
on a vector space V/F such that Cy(4)=(0). If char(F)=0, then
A is completely reducible as an A-module by Maschke’s theorem.
This means that if V/W is any factor module of V, then Cy/w(4)
=(0). If char(F) =¢#0, then we have by Theorem 2.3, Chapter 6 in
Gorenstein [2], that g##p. Thus, V is completely reducible as an
A-module and we have as above that Cy;w(4) =(0) for any factor
module of V. In any event, Cy;w(4) =(0).

THEOREM 2.4. Let A be a self-normalizing complement of type (p, p)
to a normal Hall subgroup H of a solvable group G. Assume that G has a
faithful representation on a vector space V/F where Oy (H)=1I if
char(F) =q#0. Then, H is nilpotent if Cy(A4)=(0).

Proor. We argue by induction on|G| + dimsV. The ground case
is clear.
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Let F; be a splitting field for all subgroups of G. Set Vi=Fi®rV
and consider the representation which V; affords for G in the obvious
manner. Now, it is easy to see that the hypotheses of the theorem are
satisfied for the induced representation. Hence, we may assume that
F=F.

We first consider the case where G does not act irreducibly on V.
Let (0)< Vi<V be a G-submodule of V. Let H; be the kernel of
the representation which V; affords for H. Now, if Af contains an
element, say 7, which acts trivially on Vj, then 7 acts trivially on
H/H, by Lemma 1.5. Thus, if 4 ={r, B), then B is regular on H/H;
since 4 is f.p.f. on H/H; by Lemma 1.3 and 7 acts trivially on H/H;.
Hence, it follows by Thompson's result that H/H, is nilpotent.
If A is faithful on V3, then the kernel of the representation which
V1 affords for G is H; since |A| is coprime to |H I Thus, we can
apply our induction hypothesis to [G:H;]+dimrV; to obtain that
H/H;i is nilpotent. In either case, we have that H/H; is nilpotent.
Now, let H, be the kernel of the representation which V/V; affords
for H. By repeating the above arguments, it follows that H/H, is
nilpotent. This means that H/HyN\H; is nilpotent. Now, if Hi/N\H,
contains an element x31 the order of which is not divisible by
char(F), then clearly x acts trivially on V since it acts trivially on
Vi and V/Vi. Consequently, it follows that Hiy\H,=1I unless
char(F) =¢#0, since G is faithful of V, in which case HiN\H, is a
g-group. But, HiN\H, is normal in H and O.,(H)=1I. Therefore,
H\MH, =1 in either case which yields the nilpotency of H. We there-
upon may assume that G acts irreducibly on V.

Now, if A* contains an element « such that Cy(a) = (0), then we
have by Theorem 2.3 that H is nilpotent. So, assume that Cy(a) # (0)
for all xE A¢.

We now claim that the hypercenter Z, of H is trivial. This is in
fact equivalent to the center Z of H being nontrivial. Assume that
Z#]I. Since Z is normal in H and since O,(H) =1, it follows that
0,(Z)=1I. Now, we have by Lemma 1.2 that there is a yE Af such
that Cz(y)#I. Set U=Cz(y). Clearly, U is a normal A-invariant
subgroup of H. Consider W= Cy(y). We have by the above para-
graph that W (0). It is easy to see that W is an 4 U-submodule of
V. In particular, Wis a (¢) U-submodule of V where 4 ={v, ¢). Now,
o is regular on U since v centralizes U and 4 acts in a f.p.f. manner
on H and hence on U. Also, o is regular on W for the same reason. It
then follows by Lemma 2.1 since ¢ does not divide |{¢)U]| that
Cw(U)#(0) and hence, ¥=Cy(U) 5 (0). But, Y is a G-submodule of
V since U is a normal A-invariant subgroup of H. Consequently, it
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follows from the irreducibility of V that Y=V and we have a con-
tradiction to the assumption that G is faithful on V. Therefore, Z, =T
as claimed. This means, of course, that H is not nilpotent.

Now, let L be any proper normal A4-invariant subgroup of H.
Since 0,(L) is characteristic in L, it is normal in H and so, O,(L)=1.
Also, AL is faithful on V. Hence, we can apply our induction hy-
pothesis to I AL| + dimpV to obtain that L is nilpotent. Therefore, all
proper normal A-invariant subgroups of H are nilpotent.

According to Lemma 1.1 H contains an A-invariant Carter
subgroup, say C. Let K=T,(H) denote the hypercommutator sub-
group of H, the smallest normal subgroup of H with nilpotent factor
group. We assert that K is a minimal normal A4-invariant subgroup
of H. Assume that there is a nontrivial normal 4-invariant subgroup,
say M, which is properly contained in K. If H=CM, then it follows
that H/ M =CM/M=C/CNM which is nilpotent since all Carter
subgroups are nilpotent. But, this contradicts the fact that K is the
smallest normal subgroup of H such that H/K is nilpotent. Hence,
CM<H. Now, we have that Cyg(M) < H since Z,=1. Since Cy(M)
is clearly a normal A-invariant subgroup of H, it follows from the
above paragraph that Cy(M) is nilpotent. Hence, ¢ does not divide
[ CH(M)I since it is a nilpotent normal subgroup and O (H)=1. We
now consider 0,(CM). Since it is a normal g-subgroup of CM, it
follows that O,(CM)=F(CM), the Fitting subgroup of CM. Let
CM=5>5>-->S;=M> -.->S,=1I be any chief series of
CM which contains M as a member. We have by Satz 4.3, Chapter
III in Huppert [4], that F(CM) =N Cca(Si/Sit1). Then, 0,(CM)
< F(CM) and ¢ not dividing | M|—since M is a nilpotent normal
subgroup of H and O,(H)=I—yields by Theorem 3.2, Chapter 5
in Gorenstein, that O,(CM) = Cy(M). Thus, O,(CM)=1. We then
apply our induction hypothesis to |CMI + dimpV to obtain that
CM is nilpotent. However, this implies that C<N¢u(C), a contra-
diction to the fact that Carter subgroups are self-normalizing sub-
groups. Therefore, we have established that K is a minimal normal
A-invariant subgroup of H.

Now, it follows that CN\K =1 since H=CK, H is not nilpotent,
and K is a minimal normal A-invariant subgroup of H. We claim
that C contains no proper normal 4-invariant subgroups. Assume to
the contrary and let Co be such a subgroup. Now, CoK is clearly a
normal A-invariant subgroup of H and hence, CoK is nilpotent
by previous arguments. This means that Cx(Co)#I. But, K is
abelian, since it is a minimal normal 4-invariant subgroup of H, and
Co is a normal A-invariant subgroup of C. Thus, it follows from the
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fact that H= CK that Cx(Co)#! is a normal A-invariant subgroup
of H. Thus, Cx(Co) =K from the minimality of K. This means that
Co is a normal A4-invariant subgroup of H. In fact, this implies by
Theorem 11.11, Chapter 6 in Huppert [4], that Cy<Z, since C is
a system normalizer of H by Theorem 13.4, Chapter 6 in Huppert
[4]. This obviously contradicts the assumption that Z,=I. There-
fore, C contains no proper normal A-invariant subgroups as claimed.
In particular, we have that C is abelian.

Now, since A acts irreducibly on C and since 4 cannot be a regular
group of automorphisms on C by Lemma 1.2, it follows that 4¥ con-
tains an element, say a,, which centralizes C. Thus, C= Crx(a).
Now, if 4 ={(ay, 8), then B is regular on Cy(ao) since 4 is f.p.f. on H
and hence on Cg(ao). Hence, it follows by Thompson's result that
Cu(ao) is nilpotent. We then have from the fact that C is self-
normalizing in H that C= Cpg(ay). In particular, it follows from this
that a is regular on K.

Now, we let U be any irreducible {ao)K-submodule of V. Since G
acts faithfully and irreducibly on V, it follows that the kernel K; of
the representation which U affords for K is properly contained in K.
Also, ayp acts nontrivially on U since otherwise we would have by
Lemma 1.5 that [ag, K] £ K, <K, a contradiction to a, being regular
on K. Furthermore, we have by this same line of reasoning that
dimpU> 1. It then follows by Satz 17.10, Chapter V in Huppert, that
dimpU =9 since F is a splitting field for all subgroups of G. In addi-
tion to this, U is also an 4 K-submodule by Lemma 2.2. We claim
that U= V. In this respect, it is necessary and sufficient to show that
Uc=U for all c&C since V is an irreducible G-module. Let BE A4
where 4 ={ao, B). Since ap centralizes C, it is clear that Uc is an
(a0)K-submodule of V and hence, is an 4K-submodule of V by
Lemma 2.2 since dimrU=p. So, we have for each ¢&C that Uc
= UcB= UB~'cB. This means that U= U|[B, ¢] for all cEC. Now,
aoECe(C), and so, B is regular on C since 4 is f.p.f. on C. It is well
known that the regularity of 8 on C guarantees that each element x
of C has a unique representation of the form x= [B, ¢c=!]. Thus, Uc
= U which establishes that U=7V. In particular, we have that
dimpV=p.

Now, let {"/1, s 'Yp+1} be a complete set of generators for the
p+1 cyclic subgroups of 4. Since, p#¢q and Cy(4) =(0), it follows
that V=@ D 21! Cv(y:). Consequently, it follows from dimeV=p
that there is at least one 7, such that Cy(y:) =(0). But, this implies
by Theorem 2.3 that H is nilpotent, a contradiction to the assumption
that Z,=1. Whence, the proof is complete.
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We denote the nilpotent length of a solvable group G by n(G).
Let K;=K;(G) denote the 7th member of the descending nilpotent
series, that is, K; is the smallest normal subgroup of G such that
n(G/K;) <i. We now prove the main result of this paper.

THEOREM 2.5. Let A be a group of type (p, p) which is a f.p.f.
coprime operator group on a solvable group G. Then, n(G) 2.

ProoF. Assume that the theorem is false and let G be a counter-
example of minimal order.

Consider K; and let L#I be any normal A-invariant subgroup of
G such that L=< K,. Now, we have by Lemma 1.3 that 4 acts in a
f.p.f. manner on G/L and so, #(G/L)<2 by the minimality of G.
Since K is the smallest normal subgroup of G such that #n(G/K,) =2,
it follows that K;<L. Thus, K, contains no nontrivial normal A4-
invariant subgroups of G properly. In particular, K, is an elementary
abelian g-subgroup of G, ¢ a prime.

Let K; be the hypercommutator subgroup of G and let C be an
A-invariant Carter subgroup of K;. Now, C<K; since K; is not
nilpotent. Set N=Ng(C) and let g&G. Then, C?<K, since K; is
normal in G. But, all Carter subgroups of K, are conjugate in Kj.
So, there is an x €K, such that C?=C= In fact, we can choose x so
that x €K, since Ky = CK,. Thus, it follows that gx~'& N. This means
that G= NK,. Now, it is clear that NV is an A-invariant subgroup of
G since C is an A-invariant subgroup. Thus, NNK,=1 since K; is a
minimal normal A-invariant subgroup of G and G=NK,.

We now claim that K, is self-centralizing in G. This is equivalent
to T=Cy(K;) =1. Assume that T 1. Since T is a normal 4-invariant
subgroup of N and T centralizes Ko, it follows that T is a normal
A-invariant subgroup of G. We then have by the minimality of G
that #(G/T) =2. This means that K, =T since K, is the smallest
normal subgroup of G such that n(G/K,) =2. This clearly contradicts
NNK,=1. Thus, T =1 as claimed.

Now, set U=0,(N) and assume that UsI. Since UK, is a g-group,
it follows that Cg,(U)#I. However, U is a normal 4-invariant sub-
group of N; consequently, Ck,(U) is a normal A-invariant subgroup
of G since K is abelian. This means that K;= Cx,(U) because of the
minimality of K,. However, this is a contradiction to K, being self-
centralizing in G. Therefore, U=04,(N)=1.

We now view K as a vector space over Z, and consider the repre-
sentation which it affords for the semidirect product AN of A over
N. Since N is not nilpotent and since 4 is f.p.f. on N it follows by
Lemma 1.5 that 4 is faithful on K,. Hence, it follows that the kernel
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of the representation is contained in N since | 4| is coprime to | N].
Thus, the representation is faithful since K, is self-centralizing in
G = NK.,. Finally, 4 is clearly self-normalizing in AN since 4 acts in
a f.p.f. manner on N. It thereupon follows by Theorem 2.4 that N
is nilpotent which contradicts our assumption that the theorem is
false, and the proof is complete.
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