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ITERATIVE SOLUTION OF A WIENER-HOPF
PROBLEM IN SEVERAL VARIABLES1

STAVROS N. BUSENBERG

Abstract. An extension of the classical problem of Wiener and

Hopf to functions of several complex variables is considered. A

sufficient condition for the unique solvability of the problem is

obtained. Finally, a method for an iterative construction of the

solution is given.

1. Introduction. A recent analysis of a diffraction problem has led

Kraut and Lehman [l] to extend a classical problem of Wiener and

Hopf [2], [3] to functions of several complex variables. To pose the

problem let P" be the real «-space and Cn the space of n complex

variables z = (zi, • ■ • , zn), Zj=x,+iyj. Let SoER" be the set

{y — (yi, ■ ■ • ,yn) '•l¡<yj < Sj}, and by the tube T0 with the basis So de-

note the set {z = x+iyECn:yESo}. To each of the 2" possible choices

of yj>y,- or y,<hj attach basis sets Sp and corresponding tubes Tv,

p = l, ■ • ■ , 2n, in some order, such that 5i= {y'-y,<y,,j = l, ■ • ■ ,»}.

By A (Tp) denote the class of functions/: TP-^C which are analytic on

Tp, and by Ao(Tp) denote all fEA(Tp), p^O, obeying/(z)—»0 as any

Iy>| —*■ °° m Sp- Finally, by H(TP) denote the class of all/G^4(J¡>)

such that

(1) 11/11, = sup { f+"
VBSP   (J    _.

The extended Weiner-Hopf problem (henceforth abbreviated to the

EWH problem) can be stated as follows: Given a function kEA(T0)

and bounded on T0 and given giEH(Ti), find 2" functions fPEH(Tp),

p = l, ■ ■ ■ , 2", such that

2»

(2) k(z)fi(z) = gi(z) + £/,(*),        V2 E To.
p=2

2. The main results. This section is devoted to the proof of The-

orems 1 and 2 below.
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Theorem 1. If the range of k for zETo lies in a closed, bounded,

convex set which does not contain the origin, then the EWH problem has a

unique solution.

It is noted that under the conditions of Theorem 1,3 a closed disk

in C which contains the range of k and does not contain the origin.

Let w9*0 be the center of this disk, and note that its radius is less than

\w\. Thus, if

(3) h(z) = k(z) - w,       zE To,

it follows that h(z)EA (To), is bounded on 70, and

(4) sup ( | hiz) | ) <  | w | .

Next, introduce the notation siTp) to denote the spine of Tv, p^O.

That is, if Sp is given by inequalities of the forms Ji<y,- or yy<5j,

denoting by dSp the lines (-co +¿7/, °° +iy¡) or (oo A-ih,, — oo -f io,),

respectively, then siTp) = ü"-i dSp.

Finally, iífEHiTp), p9*0, note that (Bochner [4]) the Cauchy in-

tegral formula

fiz) = (2«)- f     f/(r) n Gv - «a-1*/, 2 e tp,
J *(T„)   J 3 = 1

is valid, where the boundary value/(f) of f(z) is square integrable over

R" as a function of x, and is attained a.e. as z—>ÇEs(Tp), zETp.

Theorem 2. Let k satisfy the conditions of Theorem 1, and letwEC

and h(z) be given as in (3). Define the operator L :77(7o)—>77(7i) by

7(/)(Z)=w-»L(Z)-(2«)-" f      ( hiomi\i^-zi)-^X
... L •/«(r1) «> ;=i J

/e/7(r„).

7Aew /fee sequence f{ given by

(6) /? = «i,      A = Lift1],

converges uniformly on compact subsets of 7i to the /i of the solution

{fn}T-1 of ¿fee EWH problem. The remaining fp, pp^l, are given by

,„,      /,(*) = (2*t)-» f        f [*G0/i(r) -*i(f)] ñ (fy-zy)-1^/,
\i) J >(TP) J y-i

zG7p.
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Before proceeding with the proofs of these theorems, we present

five lemmas, some of which are in the literature, but are listed here

for ease of future reference. The first is a special case of a theorem of

Bochner [5].

Lemma 1. FEH(TP) for some p, iff 3 a measurable function

<p(t) =<p(h, ■ • ■ ,tn) on Rn such that

P!

F(z) = J • • • J exp ( ¿ izjtA <b(t)dti ■ ■ ■ dln,       z E Tp.

(8)       <py(o = *«) exp (-T,y,t!\e

(i.e., <py(t) is square integrable) and

(9)

Moreover,

(10)       llFll, = sup ((21r)"'2 f f \ <bv(t) \2dh ■ ■ ■ dln)    .
vesp \ J  _«, J /

For the proof see [5] or else Bochner and Martin [6]. The next re-

sult is essentially also due to Bochner [5].

Lemma 2. If FEH(T0), 3 1 set {Pp}f=1 of functions FPEA0(TP)}

2"

(ii) J(z) = 22 J"P(Z),    zgjo,
p=i

and

Fp(z)=Lp[F](z) = (2m)-» f f F(fi f[ (fi-zy)"1^,
J t(.Tp)   J Í-1(12)

zETp.

For the proof see Bochner [5], and for the uniqueness part of the

result see Kraut et al. [7].

Lemma 3. If fPEH(Tp) for some p = \, ■ ■ ■ , 2n, then fpEA0(Tp).

Moreover, if fpEH(Tp), j = l, 2, • • • , and if ||/¿-/P||P->0, as /->«>,
thenfP-^fp(z) uniformly on compact subsets of Tp.

Proof. If z°ETp and if lpEH(Tp), then lp can be expressed as a

convergent Taylor series in a polydisk K with center z° and nonzero

radius r = (ru • • • , r„). Moreover, r,=yj—jj or r, = Sy—yj, are the

greatest possible radii of K. Thus
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f    í i «•) i* n «M*
J J K >=1

- I ... I I ... I       £ a«exp(*2>¿/) n^y
J     o   J J     o   J o   I |a|=o \  y-i       /  y-i

2    n

U rßrjdOj
y-i

(13)

-(WE  |aa|2n^+2(2«y+2)-
a I J-l

2 I .   ,  <\   I 2= n-;•!«* )f.j=i
where a = (ai, • • • , a„), |a| = 53?-1 ai> and a0 = l(z°) was used in the

last step. Now

(14) f f \ lP(z) fdxidyi ■ ■ ■ dxndyn è 2n\\lp\\l jj rs.
•I J K j-l

Combining (13) and (14) it is seen that

as) \iP(z)\ ^(2*-r2n'71/2iwi,.
3-1

Hence, as any |y,-|—►*> in Tp it is seen that r,-—>°o and lP(z°)—>0=*lp

EA o(Tp), and the first part of the lemma is established.

Next, if U is a compact subset of Tp, then the distance from U to

dTp is positive; hence, 3/3,-i 0</33<ry,/ = 1, ■ ■ ■ , n, holds   Vz°£Z7.

Thus

do)      i iP(z°) i ^ (2*-y2 ft ßT'Wu   vz°e u,
3-1

and convergence in the || • ||p norm implies uniform convergence in U.

This completes the proof of the lemma.

Lemma 4.  If Fe77(7„), 3 1 set \FP} = {P„[F]}, p = l, • • • , 2»,
of functions FpEHiTp) s

(17) F(z) = £ FP(z) = £ Lv[F](z),       z E T0,
p=i p=i

a/Aere ¿fee PP are defined by (12), a«¿

(18) ||7P[7]||„ ^ ||F||0,        i-l,...,2».
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Proof. Only the existence of the FPEH(TP), and hence FPEA0(TP)

by Lemma 3, satisfying the first part of (17) and (18) need be shown,

since uniqueness, and thence, the remainder of (17) will follow from

Lemma 2.

From Lemma 1 3 <p(t) measurable in Pn s (8) and (9) hold with

p = 0. The integral in (9) may be written as the sum of 2B integrals

obtained by writing each of the single integrals as the sum of an

integral on ( — oo, 0) and one on (0, w). With each Sp associate one of

these 2" integrals, denoted by (/ • • • f)p, as follows: whenever

yi>7i (yi<àj) enters in the definition of Sp, the/th variable is in-

tegrated on (0, co) ((— oo, 0)). Then

*(*) = 22 ( f • • ■   f  )  exp( ¿M¿yW(í)á/i • • • dtn,
(19) *=iW J lp        \y_i       /

zE T0.

It will now be shown that the first integral (p = 1) yields the Pi in (17).

From  (8)  and Fubini's theorem fZ„ exp( — 2yiii)|r/>(/)| 2dti exists

for   7i<yi<3i    for    almost    all    t' = (k, • • • ,    ¿n)GPn_1. Hence,

/0°° exp( — 2yifi) | (¡>(t) 12dh converges for 71 <yi, and

("S2"")/.exp ( - 22 2yyJy J J     exp( - 2yih) \<¡>(t)\ 2dh

is integrable for t'ER"'1 and for yj<y,<bj, j = 2, ■ ■ ■ , n. Repeating

the above argument for the remaining (n — 1) variables, it follows that

(J ■ • • /)i( — 227-1 2y^) I *(01 *IR_i di» converges for yESi. De-
fining 4>(t) to be zero when y3<0 and using Lemma 1, it is seen that

the first term in (19) belongs to H(Ti), and may be set equal to Ft.

Applying the same argument to the remaining integrals for p

= 2, ■ ■ ■ , 2", in (19), the first part of (17) is established.

From (10) of Lemma 1 it is seen that

(20)

\Fp\\l = sup (2w)al2( j ■ • •   f) I <t>v(t) \2dh ■ ■ ■ dtn

g sup (2ir)"/2 I • • ■ | | <t>v(t) | V ■ ■ -dtn = \\F ||o.

This completes the proof of Lemma 4.
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Lemma 5. IffiEHiTi) then

(2D        ||/i||i = l|/i||o = lim if ■ ■ ■ jlfiz) \'dxi ■ ■ ■ dxn\     .

Proof. Let

U°° }   1/2
|/W|y*i|   ,

M(y,f) ={/•■•/ l/(z) l2^ • ■ ■ dx»\    ■

It is known (see Hille [8]) that Mi(y;/) is a nonincreasing function of

yi. Now, if Oi<yi,

f        f[Miiy;f)]*dx2- ■ -dxn

¿ff [Miibi, yt, ■ ■ ■ , yn;f)]Hx2 ■ ■ ■ dxn.

Thus, M(y;f)^Mibi,y2, ■ ■ ■ ,yn,f).
In a similar way, it can be shown that Miy;f) is a nonincreasing

function of y,-, j = 2, • ■ ■ , n. This fact and the definition (1) of || -\\o

and || • ||i establish the lemma.

Proof of Theorem 1. It is first noted that P(70) is a linear space

with scalars in C and that || -||o is a norm over this space. It follows

readily, using Lemma 3 (see [6, Chapter VI ] for example) that 77(70)

is a Banach space.

Consider the operator defined by (5) and use the notation in (12) to

obtain

(22) L[f] = w-Ksi - Li[hf]),       f E HiTo).

Since h is bounded and hEAiTo), hfEHiT0) and, by Lemma 4,

Pi [hf] EHiTi). Thus L is a linear operator.

(23) 7:77(7o) ^ 77(70 C P(70).

From (22), the linearity of Pi and Lemma 4, it is seen that if P and

GG77(r„),

(24) \\L[F] - L[G]\\o = \w\-^\\Li[hiF-G)]\\oè \ w\-i\\kiF - G)\\0-

Now, from (1), (4) and (24),

(25) \\L[F] - L[G]\\o < | w h1 sup | hiz) | \\F - G\\0 < a\\F - G¡|„,
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where 0<a<l. Thus J is a contraction mapping and 3 1 fEH(Te)

» L[f]=f. But, from (23), it follows that f=fiEH(Ti), and hence

3 lfiEH(Ti) 9

(26) L[fi] = /i.

From (3), (5) and (26), it is seen that wfi = gi — Li[(k— w)fi],

whence, using (26) again, it follows that

(27) Li[kfi] = fl.

However, kfiEH(T0) and by Lemma 4 and (27), 3 1 set

{Lp[kfi]}Hi,Lp[kfi]EH(Tp)>

(28) kfi(z) = ¿ Lp[kfi](z) = gi(z) + 22 ¿*[¿/i](z),       z E To.
J>=1 i>=2

This completes the proof of Theorem 1.

Proof of Theorem 2. From the proof of Theorem 1, it follows

that the sequence/f, j=0, 1, • • -, defined in (6) converges in the

||-||o norm to the/i of the solution {/p}^" i of the EWH problem.

Moreover,/iGiJi(Ji) V/, and by Lemma 5, f{—fi in the ||-||i norm

and hence uniformly in compact subsets of Pi. This establishes the

first part of Theorem 2. To complete the proof, note that equation (7)

is a consequence of equation (28) and Lemma 4.

3. Remarks on previous results. As a special case of Theorem 1 it

is noted that if k(z) obeys

(29) | 1 - k(z)\   < I,       VzE To,

then the EWH problem is uniquely solvable. Kraut [9] and Kraut

and Lehman [l] considered the case7y<0<Sy,/ = l, ■ ■ ■ , n, and the

class of kernels k(z) = 1 —]\h(z), where X is a real parameter which can

be varied. They replace the condition (29) by the weaker condition

|l— k(z)\ <1, Zj—Xj, j = l, • • • , n. This latter condition is not

sufficient for the unique solvability of the EWH problem, as is seen by

taking (for n = 2), k(z) = 1 + [2(zi + i)(z2+i)]~\ g(z) = (zi+i)~l

■(z2+i)-\ and J„= {zEC2: -3/4<y3<3/4}. The resulting EWH

problem satisfies this latter condition but has no solution. However,

since the h(z) in [l] and [9] is uniformly bounded in T0, X can be

chosen small enough for (29) to hold in P0, and from Theorem 1 the

resulting EWH problem has a unique solution.

The author was introduced to this problem by Dr. Edgar Kraut.

He is indebted to him as well as to Professor Robert Borrelli and Dr.

William Hall for a number of discussions and suggestions.
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