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STABLE THICKENINGS IN THE TOPOLOGICAL CATEGORY

R. L. CHAZIN1

Abstract. A thickening, in the topological category, of a com-

plex K is an equivalence class of simple homotopy equivalences

4>:K-+M, where M is a topological manifold with boundary. Here

it is shown that for stable thickenings (dim M2>dim K), the set

3(Íl) of stable thickenings is in 1-1 correspondence with homotopy

classes of maps of K into BTop.

Wall [l] and Mazur [2] have studied a "functor" of complexes

called a thickening. Given a complex K, a thickening of K is essentially

an w-manifold M which is homotopy equivalent to K. The set of

these, under a suitable equivalence relation, forms a set Sm(K). It is

clear that this kind of construction can be done in the differentiable,

piecewise-linear, or topological categories.

In [l ] and [2 ] it is shown that the stable thickenings of a complex

K are a representable functor, i.e. if we denote the stable thickenings

of K by 3(K), then we have 3(P) ~ [K, BO] in the smooth category

and 3(K) <= [K, BPL] in the piecewise-linear category. In this note

we establish the analogous result for the topological category. In a

subsequent paper, we will give an analogous result for the homotopy

category.

1. Definition. We are able to use the same definition as Wall. Let K

he a finite complex of dimension k with basepoint * , and (b'.K—>M,

a simple homotopy equivalence of K into a compact topological

manifold-with-boundary of dimension m, m^kA-3. The notion of

simple homotopy equivalence is well defined in the topological cate-

gory since, by Kirby-Siebenmann [3], every compact topological

manifold has the homotopy type of a finite complex.

We require that the basepoint * of M lie in dM and that the in-

clusion i'.dMEM induce an isomorphism i*:7Ti(dil7)—*7ri(il7), and

that the tangent space of M at * be oriented. Then we say that the

pair (Af, <p) defines a pre-m-thickening of K.

Define two pre-thickenings (Mi, 4>i), (M2, (b2) of K to be equivalent,

if there is a (topological) homeomorphism h:Mi—*M2, preserving *

and the given orientations of the tangent space there, such that
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h4>i~<p2: (K, *)^>(M2, *). An m-thickening of K will be such an equiva-

lence class and by 3m(K) we denote the set of all such w-thickenings.

2. Stable thickenings. As in Wall [l, §5] denote by 3(iC) the stable

limit of the inclusions 3n(K)—>3m+1(K). 3(K) will be called the set of

stable thickenings of K.

Given a representative manifold M in 3(J£) we take its tangent

microbundle and pass to the classifying space. Thus we get a classify-

ing map M—>BTop and hence a map K—>BTop, which is basepoint

preserving and unique up to homotopy. Thus we have a natural map

r(K) :3(PJ)—>[K, BTop]. We can now state the following theorem.

Theorem 1. For any K, t(K) is a bijection.

The remainder of this paper is devoted to the proof of this theorem.

As in the smooth and PL cases, t(*) is the homotopy class of the

constant map i£—>BTop. Let <¡>:K-^Mo be the trivial thickening,

i.e. the one corresponding to the map K—>pt. ; Mo is parallelizable

and hence corresponds to the constant map K—>BTop.

The proof that r is surjective in the topological category is exactly

the same as in the smooth and PL categories; see Wall [l, p. 80].

For completeness, we restate it here.

Let f'.K—»BTop. As Top is the limit of the Top„, / can be factored

as

/ 3
K ^ BTopn A BTop

where/ is inclusion, for some n. Thus/ induces a bundle over K with

fibre Rn. Since <f> is a homotopy equivalence there is therefore a cor-

responding bundle £ over M0, a trivial thickening for K. Then

t(E(%)) =7t*(£) ffie™, where tt is the projection of £ and em a trivial

bundle. Let EC be the zero section in £. Then the thickening deter-

mined by <f> followed by a map into a compact neighborhood of X is

a thickening a such that r(a) = [/]. The latter assertion follows im-

mediately from the equation

t(£(Ö) = «*(Ö © e»

and the fact that 9C is a homotopy equivalence.

To prove that r is injective we can assume, after stabilizing, that

there are thickenings (M™, </>i) and (M2, <p2) with equivalent tangent

bundles. We then need the following lemma:

Lemma 1. Let <j>:Mf^Mf be such that <t>*r(M2)^(Mi). Then there
is an immersion yp : Mf-^M2 such that \p~d>.
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Proof. We use the immersion theorem of Lees [4] or Gauld [S].

For convenience in applying their results we give the proof in the

language of microbundles.

Given d>, we construct a representation <¡>:tíMí)—yr(Mi). This is

essentially a map such that the following diagram commutes:

Mi-» M2

4* A\     4*

Mi X Mi -» Mi X Mi

lpri    ,        lpri
Mi-► M2

and for which there exist charts

ß:U X Rm^>Mi X M,       y : U X Rm -* M i X M2,

such that 7-1<f5/3 = lrj X 1b™.

We now apply Gauld's theorem. This essentially asserts that under

certain very mild restrictions, which are satisfied here, homotopy

classes of immersions of Mi into M2 are in 1-1 correspondence with

homotopy classes of representations of r(Afi) in t(M2). Hence (b is

homotopic to some immersion \p.

Since m^2k + l, 4>i is homotopic to an embedding (b[, by Dancis

[6]. We can also modify \¡/(f>í by a regular homotopy to make it an

embedding.

We now wish to compress 7l7i into a neighborhood U of <bí (P). As

there is no satisfactory theory of regular neighborhoods in the topo-

logical category, we use Lees' modification [7] of an engulfing

theorem due to Newman [8]:

Theorem 3 (Lees). Let Qq be an open topological manifold with

<7 = 5. Let U be an open subset of Q with (Q, U) iq — 3)-connected.

Suppose that any compact subset of Q lies inside a compact subset C

with iQ, Q — C) 2-connected. Then any compact subset C of Q can

be engulfed by U, i.e. there is a homeomorphism h : Q—*Q, fixed outside a

compact set C" with hiU)Z)C.

Now attach a collar to Mi, let M{ = MAJdMXI. Then Mi is
locally flat in M[. A neighborhood U as required by Theorem 3 can

be found by removing a suitable small closed subset and using duality

or a cellular approximation theorem [9, 7.6.17]. Applying Theorem 3,
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we compress Mi into U, i.e., lMi is isotopic to an embedding of a

neighborhood of Mi in M{, into U.

The remainder of the proof now proceeds as in Wall [l]: Since

xf/cßi is an embedding of K, we can assume that \p embeds <p[ K and

thus a neighborhood of <p{K. Using the above compression, \p is iso-

topic to a map yV which embeds Mi in M2. Applying the s-cobordism

theorem, which holds in the topological category (using Kirby and

Siebenmann [3]), we conclude that Mi and M2 are equivalent thick-

enings. This completes the proof.
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