STABLE THICKENINGS IN THE TOPOLOGICAL CATEGORY

R. L. CHAZIN¹

ABSTRACT. A thickening, in the topological category, of a complex K is an equivalence class of simple homotopy equivalences $\phi: K \to M$, where M is a topological manifold with boundary. Here it is shown that for stable thickenings (dim $M \gg \dim K$), the set $\Im(K)$ of stable thickenings is in 1-1 correspondence with homotopy classes of maps of K into BTop.

Wall [1] and Mazur [2] have studied a "functor" of complexes called a *thickening*. Given a complex K, a thickening of K is essentially an m-manifold M which is homotopy equivalent to K. The set of these, under a suitable equivalence relation, forms a set $\mathfrak{I}^m(K)$. It is clear that this kind of construction can be done in the differentiable, piecewise-linear, or topological categories.

In [1] and [2] it is shown that the stable thickenings of a complex K are a representable functor, i.e. if we denote the stable thickenings of K by $\mathfrak{I}(K)$, then we have $\mathfrak{I}(K) \approx [K, BO]$ in the smooth category and $\mathfrak{I}(K) \approx [K, BPL]$ in the piecewise-linear category. In this note we establish the analogous result for the topological category. In a subsequent paper, we will give an analogous result for the homotopy category.

1. **Definition.** We are able to use the same definition as Wall. Let K be a finite complex of dimension k with basepoint *, and $\phi: K \rightarrow M$, a simple homotopy equivalence of K into a compact topological manifold-with-boundary of dimension m, $m \ge k+3$. The notion of *simple* homotopy equivalence is well defined in the topological category since, by Kirby-Siebenmann [3], every compact topological manifold has the homotopy type of a finite complex.

We require that the basepoint * of M lie in ∂M and that the inclusion $i:\partial M \subset M$ induce an isomorphism $i_*:\pi_1(\partial M) \to \pi_1(M)$, and that the tangent space of M at * be oriented. Then we say that the pair (M, ϕ) defines a *pre-m-thickening* of K.

Define two pre-thickenings (M_1, ϕ_1) , (M_2, ϕ_2) of K to be equivalent, if there is a (topological) homeomorphism $h: M_1 \rightarrow M_2$, preserving * and the given orientations of the tangent space there, such that

Received by the editors October 22, 1969.

AMS 1970 subject classifications. Primary 57A15; Secondary 55D15, 57C10.

Key words and phrases. Thickening, stable thickening, topological manifold, classification of stable thickenings.

¹ Partially supported by NSF Grant GP-7913.

 $h\phi_1 \sim \phi_2: (K, *) \rightarrow (M_2, *)$. An *m-thickening* of K will be such an equivalence class and by $\mathfrak{I}^m(K)$ we denote the set of all such *m*-thickenings.

2. Stable thickenings. As in Wall [1, §5] denote by $\mathfrak{I}(K)$ the stable limit of the inclusions $\mathfrak{I}^m(K) \to \mathfrak{I}^{m+1}(K)$. $\mathfrak{I}(K)$ will be called the set of stable thickenings of K.

Given a representative manifold M in $\mathfrak{I}(K)$ we take its tangent microbundle and pass to the classifying space. Thus we get a classifying map $M \rightarrow B$ Top and hence a map $K \rightarrow B$ Top, which is basepoint preserving and unique up to homotopy. Thus we have a natural map $\tau(K):\mathfrak{I}(K) \rightarrow [K, B$ Top]. We can now state the following theorem.

THEOREM 1. For any K, $\tau(K)$ is a bijection.

The remainder of this paper is devoted to the proof of this theorem. As in the smooth and PL cases, $\tau(*)$ is the homotopy class of the constant map $K \rightarrow BTop$. Let $\phi: K \rightarrow M_0$ be the trivial thickening, i.e. the one corresponding to the map $K \rightarrow pt$; M_0 is parallelizable and hence corresponds to the constant map $K \rightarrow BTop$.

The proof that τ is surjective in the topological category is exactly the same as in the smooth and PL categories; see Wall [1, p. 80]. For completeness, we restate it here.

Let $f:K \to B$ Top. As Top is the limit of the Top_n, f can be factored as

$$K \xrightarrow{\hat{f}} BTop_n \xrightarrow{j} BTop$$

where j is inclusion, for some n. Thus f induces a bundle over K with fibre R^n . Since ϕ is a homotopy equivalence there is therefore a corresponding bundle ξ over M_0 , a trivial thickening for K. Then $\tau(E(\xi)) = \pi^*(\xi) \oplus \epsilon^m$, where π is the projection of ξ and ϵ^m a trivial bundle. Let \mathfrak{X} be the zero section in ξ . Then the thickening determined by ϕ followed by a map into a compact neighborhood of \mathfrak{X} is a thickening α such that $\tau(\alpha) = [f]$. The latter assertion follows immediately from the equation

$$\tau(E(\xi)) = \pi^*(\xi) \oplus \epsilon^m,$$

and the fact that \mathfrak{X} is a homotopy equivalence.

To prove that τ is injective we can assume, after stabilizing, that there are thickenings (M_1^m, ϕ_1) and (M_2^m, ϕ_2) with equivalent tangent bundles. We then need the following lemma:

LEMMA 1. Let $\phi: M_1^m \to M_2^m$ be such that $\phi^*\tau(M_2) \simeq (M_1)$. Then there is an immersion $\psi: M_1^m \to M_2^m$ such that $\psi \sim \phi$.

PROOF. We use the immersion theorem of Lees [4] or Gauld [5]. For convenience in applying their results we give the proof in the language of microbundles.

Given ϕ , we construct a representation $\hat{\phi}:\tau(M_1)\to\tau(M_2)$. This is essentially a map such that the following diagram commutes:

$$M_{1} \xrightarrow{\phi} M_{2}$$

$$\downarrow \Delta \qquad \qquad \downarrow \Delta$$

$$M_{1} \times M_{1} \xrightarrow{\hat{\phi}} M_{2} \times M_{2}$$

$$\downarrow \operatorname{pr}_{1} \qquad \qquad \downarrow \operatorname{pr}_{1}$$

$$M_{1} \xrightarrow{\phi} M_{2}$$

and for which there exist charts

$$\beta: U \times \mathbb{R}^m \to M_1 \times M$$
, $\gamma: U \times \mathbb{R}^m \to M_1 \times M_2$,

such that $\gamma^{-1}\hat{\phi}\beta = 1_U \times 1_{R^m}$.

We now apply Gauld's theorem. This essentially asserts that under certain very mild restrictions, which are satisfied here, homotopy classes of immersions of M_1 into M_2 are in 1-1 correspondence with homotopy classes of representations of $\tau(M_1)$ in $\tau(M_2)$. Hence ϕ is homotopic to some immersion ψ .

Since $m \ge 2k+1$, ϕ_1 is homotopic to an embedding ϕ'_1 , by Dancis [6]. We can also modify $\psi \phi'_1$ by a regular homotopy to make it an embedding.

We now wish to compress M_1 into a neighborhood U of $\phi_1'(K)$. As there is no satisfactory theory of regular neighborhoods in the topological category, we use Lees' modification [7] of an engulfing theorem due to Newman [8]:

THEOREM 3 (LEES). Let Q^q be an open topological manifold with $q \ge 5$. Let U be an open subset of Q with (Q, U) (q-3)-connected. Suppose that any compact subset of Q lies inside a compact subset C' with (Q, Q-C') 2-connected. Then any compact subset C of Q can be engulfed by U, i.e. there is a homeomorphism $h:Q\rightarrow Q$, fixed outside a compact set C'' with $h(U)\supset C$.

Now attach a collar to M_1 ; let $M'_1 = M_1 \cup \partial M \times I$. Then M_1 is locally flat in M'_1 . A neighborhood U as required by Theorem 3 can be found by removing a suitable small closed subset and using duality or a cellular approximation theorem [9, 7.6.17]. Applying Theorem 3,

we compress M_1 into U, i.e., 1_{M_1} is isotopic to an embedding of a neighborhood of M_1 in M_1' , into U.

The remainder of the proof now proceeds as in Wall [1]: Since $\psi \phi_1'$ is an embedding of K, we can assume that ψ embeds $\phi_1' K$ and thus a neighborhood of $\phi_1' K$. Using the above compression, ψ is isotopic to a map ψ' which embeds M_1 in M_2 . Applying the s-cobordism theorem, which holds in the topological category (using Kirby and Siebenmann [3]), we conclude that M_1 and M_2 are equivalent thickenings. This completes the proof.

REFERENCES

- 1. C. T. C. Wall, Classification problems in differential topology. IV, Topology 5 (1966), 73-94. MR 33 #734.
- 2. B. Mazur, Differential topology from the point of view of simple homotopy theory, Inst. Hautes Études Sci. Publ. Math. No. 15 (1963). MR 28 #4550.
- 3. R. C. Kirby and L. C. Siebenmann, On the triangulation of manifolds and the hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749. MR 39 #3500.
- 4. J. A. Lees, Immersions and surgeries of topological manifolds, Bull. Amer. Math. Soc. 75 (1969), 529-534. MR 39 #959.
- 5. D. Gauld, Mersions of topological manifolds, Thesis, University of California, Los Angeles, Calif., 1969.
- 6. J. Dancis, Approximations and isotopies in the trivial range, Topology Seminar (Wisconsin, 1965), Ann. of Math. Studies, no. 60, Princeton Univ. Press, Princeton, N. J., 1966. MR 36 #7144.
 - 7. J. A. Lees, Thesis, Rice University, Houston, Tex., 1968.
- 8. M. H. A. Newman, The engulfing theorem for topological manifolds, Ann. of Math. (2) 84 (1966), 555-571. MR 34 #3557.
- 9. E. H. Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35 #1007.

University of California, Irvine, California 92664