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UNIQUENESS OF TOPOLOGY FOR COMMUTATIVE
SEMISIMPLE J-ALGEBRAS

R. L. CARPENTER

Abstract. Let B be an F-algebra and i be a commutative

semisimple F-algebra such that the spectrum of A contains no

isolated points. We prove that any homomorphism of B onto A is

necessarily continuous. Let A be a commutative semisimple alge-

bra. We prove that there is at most one topology with respect to

which A is an F-algebra.

Introduction. Let A be a semisimple algebra over the complex num-

bers. It was shown by Gelfand [3, Satz 17] that if A is commutative

and has an identity, then there is at most one norm (up to equiv-

alence) which makes A into a Banach algebra. C. E. Rickart gave

several extensions of this result in the paper [6]. In [4] B. E. Johnson

proved that the norm is unique in any semisimple Banach algebra.

E. A. Michael [5, §14] extended the theorem on uniqueness of

topology to certain types of J-algebras. In particular it is proved in

[5] that the topology is unique for commutative semisimple F-

algebras in which every homomorphism of the algebra onto the com-

plex numbers is continuous. (Whether all homomorphisms of a com-

mutative J-algebra onto the complex numbers are continuous is one

of the outstanding questions which remain open for J-algebras.) In

this paper we show that if A is a commutative semisimple algebra,

then there is at most one topology with respect to which A is an F-

algebra. We also show that if <j> is a homomorphism of an J-algebra B

onto a commutative semisimple J-algebra A whose spectrum con-

tains no isolated points, then <j> is necessarily continuous.

Uniqueness of topology. A commutative J-algebra is a commuta-

tive algebra over the complex numbers which is a complete T2

topological space with respect to a topology determined by a count-

able family of multiplicative seminorms {||-||<}, * = 1, 2, • • • . No

generality is lost if the seminorms are assumed to be increasing. That

is, we may assume || •||¿g|| •||<+i for i = l, 2, • ■ ■ . The spectrum

M(A) of a commutative J-algebra A is the space of all continuous
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homomorphisms of A onto the complex numbers. M(A) is given the

Gelfand topology. If A is a commutative 7-algebra, then A can be

realized as the inverse limit of a sequence of commutative Banach

algebras An [5]. The spectrum M(A) of A is the union of the spectra

M(An) and each M(A„) is embedded continuously in MiA) [l], [5].

A commutative 7-algebra A is said to be semisimple if its radical is

{0}. It is shown in [5] that A is semisimple if and only if for an ele-

ment x in A, (¡>(x) =0 for every (bEMiA) implies x=0. Throughout

this paper, the symbol C will denote the complex numbers.

Lemma 1. Let A be a commutative algebra and <bi, (b2, • ■ • , (bn be

distinct homomorphisms of A onto C. There is an x in A such that

<biix) =0fori = l, 2, ■ ■ ■ ,n — land(bnix) = l.

Proof. Since (b, 9í4>n for i 9^n, we can find x,- in A such that^>,(x¿) =0

and (pnixi) = 1. Let x = YÏÂ=Î x>-
The following lemma appeared in [4] for a different type of topo-

logical algebra.

Lemma 2. Let A be a commutative F-algebra. Let <bi, (bi, • • • be a

sequence of distinct points from MiA) and let k be a positive integer.

Then there is a yk in A such that <pi(yk) =0 for l^i<k and (p^y^^O

for i¡tk.

Proof. Use Lemma 1 to find x¡EA,j = l, 2, • • • , such that<£i(xy)

= 0 for i = l, 2, • • • , / —1 and <bj(x¡) =1. Set yk= Zj" t E¿x¡ where
the E¡ are defined inductively. We define Ek, Ek+i, - • -by Ek = l

and, for j>k, £y = 0 if 0y(Z<=* Eixi)9iQ; and if <fo(Zi=i E{xi) =0 we
choose Ej such that 0 <E¡ and |[£yxy|13- < 2~'. Here 11 • 11¡ denotes the/th
seminorm on A and we assume the seminorms are increasing. Since

||£,Xj||j<2_> and the seminorms are increasing, we have that

Zí™ t EjXj converges to an element yk of A. It is clear from the con-

struction that yk has the desired properties.

The next lemma appeared in [7]. We sketch a proof and refer the

reader to [7] for the details.

Lemma 3. Let A be a commutative F-algebra. A can be realized as the

inverse limit of a sequence of Banach algebras A „. Let <bEM(A). If (bis

isolated in each of the spectra M(A „) which contains it, then (b is isolated

in M (A).

Proof. Use the Silov idempotent theorem to obtain an idempotent

enEAn such that (b(en) =1 and ipien) =0 for any \¡/ in MiAn) — {(b}.

The idempotents en define an idempotent e in A such that<?i(e) = 1 and

\pie) = 0 for any \j/ in MiA) — {$}.
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Theorem 4. Let B be an F-algebra and A be a commutative semi-

simple F-algebra such that M (A) has no isolated points. If "9 is a

homomorphism of B onto A, then ty is continuous.

Proof. The closed graph theorem is valid for J-algebras [2, p. 57].

Hence if we can show the graph of & is closed, then we will be finished.

Letx„ be a sequence in B such that x„—>x in B and ty(xn)—*y in A.

Let 5= {<f>EM(A) '.(ß^ is a continuous homomorphism of B onto the

complex numbers}. Then for <pES, (01îr)(x„)—>(etäf)(x) and </>("& (x„))

—*£(y), hence ^(^(x)) —4>(y). Therefore if we can show 5 separates

the points of A, then we will be able to conclude that the graph of S^ is

closed. We will show that 5 separates the points of A by proving that

5 is dense in M (A).

Assume there is a point <fi in M (A) which is not in the closure of 5.

Let A be the inverse limit of a sequence of Banach algebras An. Since

<¡> is not isolated in M(A), Lemma 3 implies there is an integer n such

that 4> is not isolated in M(An). Since the Gelfand topology is T2 and <f>

is not in the closure of S, we have that M(An) must contain infinitely

many points which are not in 5. Choose a sequence <f>i, 4>2, ■ ■ ■ of

distinct points from M(An) —S.

Use Lemma 2 to obtain a sequence yi, y2 • • • of points from A such

that <¡>i(yk) =0 for i<k and <t>i(yk) 5^0 for i^k. Let Z\, z2, • • • be ele-

ments of B such that ^(z,) =y< for i = l, 2, ■ • ■ . Use induction to

construct a sequence xi, x2, ■ • • in B such that

(i) maxims,-1| | z,- • • • z¿Xi[|| ;<2-*, and

(ii)      4>i\p(Xi) | Xl^i* E5=í Zl  •  •  • 2yXy| +i)\4>&(Zi •  •  ■ Zi) | -*.
Here || • || | < denotes the îth seminorm on B and the seminorms on B

are assumed to be increasing. It is always possible to choose x,-

satisfying (i) and (ii) since <f>¿if is not continuous at zero.

Let x— E«=i Zi • • • ZiXi. Condition (i) and the fact that the semi-

norms are increasing guarantee that the sum converges.

For each positive integer k > 1, we have

4>k^(x) = <bk*( E «i - ' * 2»*») + 4>i&(zi • • • Z4X4)

+ (f>k^(Zi • • • Zk+iXk+i)

+ 4>k* \(zi • ■ • Z4+1)   E Zk+2 ■ • ■ ZiXi
L í=4+2 J

= «frb* (   E zl •  •  * ZiXi) + <t>k^(Zl •  ■ ' ZkXk).
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Therefore

I <bk¥(x) |  > | <MKzi • ■ • zkxk)

This is impossible since <bk E M (A n) for each k and therefore ¡^^(x))!

^H^ix)!!« where ||-||„ is the seminorm on A corresponding to the

Banach algebra An. This contradiction implies that 5 is dense in

MiA).
Since 5 is dense in i!7(^4) and A is semisimple, 5 must separate the

points of A. As noted earlier, knowing that 5 separates the points of A

allows us to conclude that S? is continuous.

Remark. If we could remove the requirement that il7(^4) has no

isolated points from the hypotheses of Theorem 4, then we would have

as a special case of Theorem 4 that every homomorphism of B onto

the complex numbers is continuous.

Theorem 5. Let A be a semisimple commutative F-algebra with

respect to a topology r then r is the only topology with respect to which A

is an F-algebra.

Proof. Assume A is an 7-algebra with respect to a second topology

t\. Let i be the identity map from {A, ri) to iA, r). We will use the

closed graph theorem to show that i is continuous. It will then follow

from the open mapping theorem that i must be a homeomorphism.

Let 5= {(bEM(A, t) :<bEM{A, n)}. We will show that 5 is dense
in MiA, t). If 5 is dense in ikf(^4, r), then 5 separates the points of A.

And if 5 separates the points of A, then the graph of i is closed.

Let (b he a point in MiA ,r). If </> is not isolated in MiA, r), then we

can show as in the proof of Theorem 4 that </> is in the closure of 5.

Assume that (b is isolated in MiA, r). The Silov idempotent the-

orem implies there is an idempotent e in A such that 0(e) =1 and

ipie) = 0 for \p in M (A, r) — {(b}. We do not know that <b is continuous

on (A, ti); however, there is an element <£' of M(A, tí) such that

(b'(e) =1 [5, p. 25 ]. Let x be an element of A, then for any yp in M (A, r)

we have yf/(xe— <b(x)e) =0. Since A is semisimple, we have xe=(b(x)e.

For any x in A, <b'(x) =qb'ixe) =(b'(<b(x)e) =<b(x). Hence <p'=<b which

implies <b is continuous with respect to n. Therefore d> is in 5.

We have shown that 5 is dense in M (A, r). We conclude that * must

be a homeomorphism.

One of the most intriguing questions which remains open for F-

algebras is the question of whether all homomorphisms of a commuta-

tive 7-algebra onto the complex numbers are necessarily continuous.

4>k^ Í Z zi ' ' - ZiXi J >k.
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It is shown in [5] that for purposes of this question it is sufficient to

consider semisimple commutative J-algebras. We have the following

corollary to Theorem 5.

Corollary 6. Let A be a commutative semisimple F-algebra and <f> be

a homomorphism of A onto C. If there is an F-algebra topology for A

with respect to which <p is continuous, then 0 is already continuous on A.
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