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¿-INVARIANTS IN LOCAL COEFFICIENT THEORY

JERROLD SIEGEL1

Abstract. A transgression-obstruction theorem is presented for

not necessarily simply connected spaces. This theorem is used to

produce an explicit model for a classifying space for fibre homotopy

equivalence classes of fibrations with fibre a K(ir, n).

This note has two purposes. The first is to complete the general

treatment of obstruction theory begun in [7]. This theory does not

make the usual assumption about trivial action of the fundamental

group on the higher homotopy groups, yet it does make available

most of the geometric tools usually associated with the "1-connected

theory." The major defect in the theory presented in [7] was the

ad hoc definition of ¿-invariants used there. The definition made

necessary some special arguments which threw little light on the gen-

eral theory. What we overlooked was the fact that using the tools

developed in [7] we could prove a straightforward generalization of

the transgression-obstruction theorem, hence, making possible a con-

venient algebraic definition of the ¿-invariants. In this note we exhibit

this theorem. This theorem is, in fact, a special case of a more general

theorem of J. F. McClendon [6]. We thank the referee for pointing

this out.

An application of the transgression-obstruction theorem will be

given in the second section. We construct an explicit model of a

classifying space for fibre homotopy equivalence classes of fibrations

with fibre K(ir, n). The existence of such a space is known from gen-

eral considerations (see, for example, [3]); however, there considera-

tions do not lead to a clear understanding of the nature of the classi-

fying space. It is hoped that the more complete description of this

classifying space presented below will lead to some sort of decompo-

sition theory for classifying spaces of more general fibres.

1. Moore-Postnikov theory. In this section we give a treatment of

the central technical lemma of Moore-Postnikov theory without ref-
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erence to the fundamental group of the space involved. Naturally, it

is necessary to consider the action of the fundamental group. This is

accomplished by considering our ¿-invariants as being in a cohomol-

ogy group with an appropriate local coefficient system. We make use

of the spectral sequence defined in [7]. We adopt the terminology

and notation of that paper.

1.1. Notation. Let FQE-UB be a fibre space with Trk(F)=0,

k^n — l and w^2. Let 3„ be the system of groups {^„(7)} over B.

Let 3C3(P, 3„) be the coefficient system over B based on H"(F, 7rn(7)).

Finally, let [j]G77"(P, 7t„(7)) be the fundamental class.

1.2. Theorem. Let FQEJL>B be as in 1.1. There is a spectral se-

quence

ET'=> H*iE, p*3n)

with P¡>í~77p(P, 3C«(P, 3»))-

Proof. [7].

1.3. Theorem. In the spectral sequence of 1.2, [i] transgresses to a

class we call 7-[¿]G77n+1(P, 3„).

Proof. By 2.12 of [7] we know o1*[i]=0 iff [i] is invariant under

the action of 7Ti(P, bo). The system of groups 3„ is precisely that which

is required to give this condition in 3Cn(P, 3„). The remainder of the

necessary differentials vanish since they hit the 0-group.

The class r[i] is essentially the ¿-invariant of the first stage of a

Postnikov decomposition of FQE^B. However, first we must re-

view some geometric constructions presented in [7].

1.4. Review of [7]. (a) Let G be a group. Let iX, x0) be a base-

pointed space with a base point fixed action of G on X. There are

obvious G-actions on P(X, x0) (the space of paths starting at xo) and

0(X, xo) (the space of loops). Moreover, the fibre map e'.PiX, xo)-*X

and the pairing

p:ü(X, xo) X P(X, xo) -* PiX, xo)

are equivariant with respect to these actions.

(b) Let £—*Y be a principal G-bundle, let £(X)AF be the induced

bundle with fibre X. We have the following commutative diagram:

t(P(X,Xo))^>!-(X)

I [r

Y   -►   F
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with £(e) a Serre fibration [5].

Suppose we have a map w:B—>$¡(X). We have a fibration p induced

by the diagram

î(w,X)^i(P(X,Xo))

P i I t(e)
w

B     ->      S(X)

If we have a base point bo for B and if w(b0) =x0 we have the fibre of

p over 60 as Q(X, x0). Finally, if ((rw)*£(Q(X, x0)))A$(w, X) is the

Whitney product, p induces

fi:((rw)*mX, *o)))AÍ(w, X)->í¡(w, X).

1.5. Notation. Below we will be interested in the case where Y is

a K(wi, 1) and £ is #1 the universal bundle. We will let X be

a K(w, w + 1), we will let $ be the action of 7ri on K(ir, n + l) (see

[7, p. 2]). We denote the space f(K(ir, n + l)) by Jx^*, n + l). We

remark that if f:B—>K(iri, 1) is fixed, then the group of homotopy

classes of liftings

JT1(*, n + 1)

w /       i r

ByK(Vl,l)

is isomorphic to Hn+l(B, €>(/*#)) (see [5, p. 2]). We denote

*(w,K(w, n + l)) by Ew.

1.6. Theorem. Assume we are in the situation of 1.1. Let w'.B

—>LTl($, n + l) represent — r([i\). Consider the fibration K(v, n)

QEW-^B. There is a map, I, that makes the following diagram commute.

I
E —» Ew

Pï       ÏP
B = B

Moreover ifv = t/F then v:F—*K(ir, n) represents the class of [i].

Proof. [6].

The proof is a formal generalization of the usual one.

2. B(K(r, «)), 7T abelian. In this section we show that, with a

proper choice of iri and <ï>, the space Lri(&, w + 1) is a classifying space

for  fibre   homotopy   equivalence  classes  of  fibrations  with   fibre
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Kiir, n). We then study the homology of this space using the tools

developed in [8].

It should be noted that the notion of classifying space is modified in

that we consider base point free maps and homotopies (see [l], [3],

[9]).
We begin this section with a notion of fibre homotopy equivalence

which corresponds to the base point fixed point case.

2.1. Definition, (a) A fibration P-^(P, b0) with fibre P is a fibre

space with fibre p~1ib0) the homotopy type of P (7 fixed) and with a

fixed homotopy equivalence h:F-^p"1ibo) we denote any homotopy

inverse of h as hrx.

(b) By the fibre homotopy equivalence /, between PA(P, b0) and

E'-^iB, bo) both with fibre P we mean the usual thing without refer-

ence to P. We write/:P~P'.

(c) A strong fibre homotopy equivalence between PA(P, b0) and

E'I-*iB, b0) is a fibre homotopy equivalence

P-Cp'
Pi   ~   IP'

B    =    B

with h'fh:F-^F homo topic to 1. We write/ :P~P'.

We now consider the following situation. Let A iw) be the group of

automorphism of 7r. Let $:AÍTr)Xir—*rr be the obvious action. We

consider La^í®, w + 1).

2.2. Theorem. The space L^(T)(i>, «4-1) is a classifying space for

strong fibre homotopy equivalence classes of fibrations with fibre Kiir, n).

We take our maps and homotopy classes of maps as base point fixed.

Proof. Given any action ^i'.GXw—*w we have an induced homo-

morphism h'.G—^Aiir). This homomorphism in turn induces the fol-

lowing diagram.

h
Lai*un+\)-*LAWi*,n+ 1)

Pi lr

KiG, 1) -► ï(4(r), 1).

Given a fibration Kiir, »)CP—»P, letG=iri(P, bo) and<ï>i:GXïr—*r,

the action of the fundamental group on 7r. Theorem 1.6 tells us that

there is a map W.B—+Lo(i>i, w-f-1) with [w] = — r[i] and so that

Kit, «)CP„AP is strongly fibre homotopy equivalent to Kiir, n)
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ÇPAP. Notice the implicit use of Dold's theorem [2, 6.1]. Also

implicit is the fact that up to strong fibre homotopy equivalence Ew is

independent of wE [w]. We now map the class of K(ir, n) CIP—*B into

[/w]G [B, LA(t)($, » + l)]bp- It is clear that this map is well defined

since if

E-t+E'

i i

B    =    B

is a strong homotopy equivalence then/*[i'] = [i]; hence r[i'] =r[i].

Notice £ja,~P«>.

It is also clear that the map is onto since if [hw] E [B, L¿M (í>, n +1) ](,„,

K(ir, »)Ç£„->5 maps onto [hw]. To show the map is one-one we

only note that if £~£âu. and E'^Eh>wi, we have P~£', since, as

remarked above, Eñw^¿Eñ'W' if hw^h'w'.

2.3. Theorem. The space LA<,x)($, n+l) is a classifying space for

fibre homotopy equivalence classes of fibration with fibre K(ir, n). We

take our maps and homotopy classes of maps base point free.

Proof. We can appeal to Dold [3, p. 16.8]. Or we can prove the

result directly by noting that if £~P/ is a fibre homotopy equiv-

alence, h'fh:K(w, n)—>K(TT, n) corresponds to an automorphism

.4GAut(7r); moreover ft and h' : G—>Aut(7r) are related by the formula

h'(g) =AÜ(g)A~1. t[í] and r [i'] are related similarly. One now checks

this is precisely the effect of a free homotopy going around a closed

loop in La(x)($, n + l) representing A.

We now study the homology of La(*)($, m + 1). We will be able to

describe it in terms of more familiar algebraic objects.

Let us suppose that we have chosen a "free" A(ir) model for

K(tt, n). That is, suppose A(ir) acts freely on the cells of i^(ir, n)

except in dimension 0 where there is a single 0-cell. Let C*(K(w, n), Z)

be the cell chain complex of this model. Let C*(K(ir, n),Z)

ÇC*(JC(7r, n), Z) be the subcomplex generated by elements of the

form [C] -A [C] A EA (x). Define

(2.4) C*(K(«, n), Z) = C*(K(r, n), Z)/C*(K(ir, n), Z).

2.5. Theorem.

H¿LAW(% n + 1), Z) ca Eq(C*(K(ir, n), Z)) ® Hq(K(A(ic), l),Z).

Proof. This is the homology version of 3.7 of [8] with projective in

place of injective.
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2.6. Final remarks. The cohomology can be derived by the uni-

versal coefficient theorem; however it is not clear that a general

version of 2.5 exists. [8] tells us that, for example, Z is not a good ring

for the particular cohomology spectral sequence used. More impor-

tant, the consideration of [8] is based on the possibility that A(ir) is

finite; this is not in general present. In fact, a little thought tells us

that there should be a difference between equivariant homology and

cohomology for infinite groups of action.

The case n = l, it nonabelian, is not covered in our theory for

obvious reasons; however Gottlieb [4] has discovered a good deal of

information about this case.
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