FIELDS WITH FEW EXTENSIONS

J. KNOPFMACHER AND A. M. SINCLAIR

ABSTRACT. We show that a valued field Λ with only a finite number of nonisomorphic valued extensions is equal to the complex field C or is real closed with $C = \Lambda(\sqrt{(-1)})$.

The Ostrowski (Gelfand-Mazur) Theorem [2, p. 131], [4, p. 260] implies that with any of the valuations $v(x) = |x|^t$, where $|\cdot|$ denotes the usual modulus and $0 < t \le 1$, the real field R has essentially only one proper valued field extension, the complex field C, and the complex field has no proper valued field extension. We investigate which valued fields Λ have only a finite number of nonisomorphic valued field extensions. We take all valuations to be subadditive maps into R, and (unless specifically stated otherwise) all isomorphisms of [valued] extensions of a [valued] field Λ to be [isometric] Λ -algebra isomorphisms.

Before considering the case of valued fields, we consider a purely algebraic case by restricting to finite dimensional extensions. A field with no proper finite dimensional extensions is algebraically closed, since an extension of a field by a single algebraic element is a finite dimensional extension. On the other hand, it is well known that a real closed field has essentially just one proper finite extension, where a real closed field is a formally real field Λ (that is, no sum of squares of nonzero elements in Λ is zero) such that no proper algebraic extension of Λ is formally real [4], [5].

1 Proposition. A field Λ has only a finite number of finite dimensional nonisomorphic extensions if, and only if, Λ is algebraically closed or real closed.

PROOF. Suppose that there are only a finite number of finite dimensional nonisomorphic extensions of Λ . Let Φ be an extension of maximal finite degree over Λ . If Φ is not algebraically closed, then there is a prime polynomial p of degree greater than 1 over Λ . Then $\Phi' = \Phi[x]/(p)$ is a proper finite extension of Φ , and hence a finite extension of Λ of degree greater than the degree of Φ . Since this is impossible, Φ must be algebraically closed. If $\Phi \neq \Lambda$, the Artin-Schreier The-

Received by the editors June 9, 1970.

AMS 1969 subject classifications. Primary 1270; Secondary 1245.

Key words and phrases. Valuations, real closed fields, algebraically closed fields, real field, complex field.

orem [4, p. 316] implies that Λ is real closed (and $\Phi = \Lambda(\sqrt{(-1)})$). The proposition follows.

Now recall that the only archimedean valuations on the complex field are of the form $v_t(x) = |x|^t$ for all x in C where $0 < t \le 1$.

2 PROPOSITION. A valued field (Λ, v) has only a finite number of non-isomorphic valued field extensions if, and only if, $(\Lambda, v) \cong (C, v_i)$ or Λ is real closed with $\Lambda(\sqrt{(-1)}) \cong C$ and v corresponds to a restriction of v_t for some t $(0 < t \le 1)$.

PROOF. Suppose that the second condition is satisfied: if $(\Lambda, v) \cong (C, v_t)$ or (R, v_t) , then, by the Gelfand-Mazur Theorem [2, p. 127], the only valued extensions of Λ are essentially (C, v_t) or (C, v_t) , (R, v_t) , respectively. If $(\Lambda(\sqrt{(-1)}), v) \cong (C, v_t)$ and $(\Lambda, v) \not\cong (R, v_t)$ or (C, v_t) , let Φ be a proper valued extension of Λ . Then, since the valuation on Φ is archimedean, by Ostrowski's Theorem [2, p. 131], there is an isomorphism θ from Φ onto a dense subfield of C such that $v = v_r \theta$ for some r $(0 < r \le 1)$. Now θ restricted to Λ induces an isometric isomorphism from a dense subfield of (C, v_t) (isomorphic to Λ and of codimension 2) into the dense subfield $\theta(\Lambda)$ of (C, v_r) . Thus r = t [2, p. 131]. Since (C, v_r) is complete, this isomorphism has an isometric extension ψ from (C, v_t) onto (C, v_t) [4, p. 221]. Since $\psi^{-1}\theta(\Lambda)$ has codimension 2 in C, and $\theta(\Lambda) \ne \theta(\Phi)$, it follows that $\theta(\Phi) = C$, that is $(\Phi, v) \cong (C, v_t)$.

Conversely suppose that Λ has only a finite number of nonisomorphic valued field extensions. If the valuation v on Λ is nonarchimedean, it can be extended to any field extension of Λ [5, p. 299], and there are an infinite number of nonisomorphic field extensions of any field. Hence v is archimedean, so, by Ostrowski's Theorem [2, p. 131], there is an isomorphism θ from Λ onto a dense subfield of R or C, and a t ($0 < t \le 1$) such that $v = v_t \theta$. We identify Λ with the subfield $\theta(\Lambda)$ of C with valuation v_t .

If B is a transcendency basis of C over Λ , then $\Lambda(B)$, the subfield of C generated by Λ and B, has only a finite number of nonisomorphic valued extensions, and C is algebraic over $\Lambda(B)$. Now a finite dimensional extension of a valued field has a valuation that extends the given valuation [5, p. 292], so that as an abstract field $\Lambda(B)$ has only a finite number of nonisomorphic finite dimensional extensions. By Proposition 1, $\Lambda(B)$ is algebraically closed or $\Lambda(B)$ is real closed with $\Lambda(B)(\sqrt{-1})$ algebraically closed; hence $\Lambda(B) = C$ or $\Lambda(B)(\sqrt{-1}) = C$. If B is empty the proposition is proved, so we assume that B is not empty. Let x be an element of B, and let Φ be the subfield of

- C generated by Λ , $B \setminus \{x\}$, and $\sqrt{(-1)}$ ($\sqrt{(-1)}$ may already be in Λ). Then $C = \Phi(x)$ is a simple transcendental extension of Φ . Since C is algebraically closed there is a $\lambda = p(x)/q(x)$, where p and q are polynomials with coefficients in Φ , such that $\lambda^2 x = 0$. Hence $p(x)^2 xq(x)^2 = 0$, so that, by the unique factorization of polynomials in a transcendental element, x is algebraic over Φ . This contradiction completes the proof.
- 3 REMARKS. (i) There are archimedean real closed fields Λ contained in C with $\Lambda(\sqrt{(-1)}) = C$ and $\Lambda \cong R$ as a field but **not** as a valued field. For, it is well known that there are infinitely many field automorphisms θ of C not leaving R invariant [4, p. 157, say], and $\Lambda = \theta(R)$ is a real field with $\Lambda(\sqrt{(-1)}) = C$. If $\Lambda \neq R$ it cannot be topologically isomorphic to R, since the only closed topological subfields of C are R and C $[1, \S 3]$.
- (ii) Since the only complete subfields of (C, v_t) are C and R, Proposition 2 implies that the only complete valued fields with only a finite number of nonisomorphic valued field extensions are essentially (C, v_t) and (R, v_t) $(0 < t \le 1)$.
- (iii) Another corollary is that a valued field has no proper valued field extension if, and only if, it is isomorphic to (C, v_t) for some $t (0 < t \le 1)$.
- (iv) This last result shows that the only valued field over which the whole Gelfand theory of commutative Banach algebras can be developed is the complex field (see, for example, [6], [7]).
- (v) By the Artin-Schreier Theorem [4, p. 316], every proper subfield Λ of finite codimension in C is real closed with $\Lambda(\sqrt{(-1)}) = C$. With reference to remark (i) above, it would be interesting to know whether or not every subfield of codimension 2 in C is field isomorphic to R.
- (vi) In the second half of the proof of Proposition 2, after identifying Λ with a subfield of C, one may show that the transcendency degree of C over Λ is finite, and hence that C is the extension of Λ by a finite number of elements. Then a result of E. Fried [3] implies that $\Lambda = C$ or Λ is real closed with $\Lambda(\sqrt{(-1)}) = C$.

REFERENCES

- 1. R. Baer and H. Hasse, Zusammenhung und Dimension topologischer Körperräume, J. Reine Angew. Math. 167 (1932), 40-45.
- 2. N. Bourbaki, Algèbre commutative. Chaps. 5, 6, Actualités Sci. Indust., no. 1308, Hermann, Paris, 1964. MR 33 #2660.
- 3. E. Fried, Algebraically closed fields as finite extensions, Mat. Lapok 7 (1956), 47-60. MR 20 #6413.

- 4. N. Jacobson, Lectures in abstract algebra. Vol III. Theory of fields and Galois theory, Van Nostrand, Princeton, N.J., 1964. MR 30 #3087.
 - 5. S. Lang, Algebra, Addison-Wesley, Reading, Mass., 1965. MR 33 #5416.
- 6. L. Narici, On nonarchimedean Banach algebras, Arch. Math. (Basel) 19 (1968), 428-435. MR 38 #5006.
- 7. N. Shilkert, Non-archimedean Gelfand theory, Pacific J. Math. 32 (1970), 541-550.

University of the Witwatersrand, Johannesburg, South Africa