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DIRECT PRODUCT OF DIVISION RINGS
AND A PAPER OF ABIAN

M.CHACRON1

Abstract. It is shown that the rings under the title admit an

order-theoretical characterization as in the commutative case

studied by Abian.

Introduction. Let R be an associative ring equipped with the binary

relation (^) defined by xáy if and only if xy = x2 in R. In this paper,

it is shown that ( ̂  ) is an order relation on R if and only if, R has no

nilpotent elements i9*0). Conditions on the binary relation (g) in

order that R split into a direct product of division rings are then

studied in the light of Abian's result [l, Theorem l]. Using similar

argumentation and using certain subdirect representation of rings

with no nilpotent elements, one obtains a complete similarity with

the commutative case (yet, no extra complication in the computa-

tions).

Conventions. R is an associative ring which is, unless otherwise

stated, with no nilpotent elements (other than 0). As a result of [2],

R can be embedded into a direct product of skewdomains, R—* YL¡ei £¡

(that is to say, rings R, having no one-sided divisors of zero). The

former embedding is fixed throughout the paper. It is therefore legiti-

mate to identify any element x in R with the family consisting of all

its projections (xj.e/. Finally, all definitions in [l] are extended

(verbatim) to the present case (of a noncommutative ring R) and

are freely used throughout.

In this paper we offer the following generalization to the noncom-

mutative case of Abian's result [l, Theorem l].

Theorem. Any ring R equipped with its binary relation (^) defined

bya^b, if and only if ab = a2, is isomorphic to a direct product of division

rings if and only if ( ̂  ) is an order relation on R such that R is hyper-

atomic and orthogonally complete iin the sense of Abian).

The 'only if is just a combination of the forthcoming Lemma 2
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and a partial duplication of Abian's proof. (See first part of the proof

of [l, Theorem l].) The 'if breaks into several lemmas some which

are of independent interest.

Lemma 1. If a^b is an order relation on a ring R, then R has no

nilpotent elements ( 9* 0).

Proof. Assume x2 = 0 in R. Then x^O. However 0 is the least ele-

ment under ¿. Therefore x = 0.

Lemma 2. If R has no nilpotent elements, then (^) is a (multiplica-

tively) permissible (that is to say, a^b implies ac^be and ca^cb for

all cER) order relation on R.

Proof. Using the mentioned embedding of R (see Conventions),

it suffices to show the result for a skewdomain. In this case the oc-

currence ab = a2, is equivalent with a = 0 or a = b. Now the latter oc-

currence defines a binary relation which is obviously a permissible

order relation on R. Lemma 2 is established.

Some known properties of rings without nilpotents R which follow

at once from the considered embedding of R, are collected without

proof in the next lemma.

Lemma 3. If (S) orders R, then

(1) Any idempotent element e ( = e2) of R is in the center of R, and

ex = xe^x for all xER-
(2) For any a, xER (i) x2a = x2 implies xa — x; (ii) x2o = x implies

xax = x; (iii) x2a = 0 implies xo = 0.

We assume henceforth that R is ordered, or equivalently (Lemmas

1 and 2), that R has no nilpotent elements. Along the lines of the

proof of [l, Theorem l] let us now show

Lemma 4. Let a be an hyperatom of R. For any r such that ar^O, ar

is an hyperatom.

Proof. Let x^ar in R. By definition [l, Definition 1, (6)], there

is 5 so that xs^ars = a. As x^ar, x2 = xar implies x25 = xar5 = xa,

and x2= (xa)r — (x2s)r = x2(sr). Then (Lemma 3, (2)(i)) x = x(sr)

= (xs)r. As a is an hyperatom, either xs = 0 and so, x = (xs)r = 0, or

X5 = c in which case x = ar. Finally, assume (ar)y 5^0 for some given

y. Then, for/ = /'r with/'sothata(ry)/' = a, we get (ar)yt — a(ry)t'r■ = ar

proving thereby that ar is an hyperatom.

Lemma 5. Letx^Oin R. Assume that qf^xfor some hyperatom q^O.

Then there is an idempotent hyperatom e such that ex ^0.
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Proof. As q^O, q2yi0. Then q2s = q for some s. It follows (Lemma

3, (2)(iii)) that qsq = q. Set e = qs=^sq. As q^O, er^O and by Lemma

4, e is an idempotent hyperatom. Evaluating ex, we get ex = qsx = sqx

= sq2 = qsq — q9é0.

Lemma 6. The set E= {e„ iEl} of all idempotent hyperatoms of R

is an orthogonal set and each of its elements e, generates a division ring

D^eP.

Proof (sketched). By definition of an hyperatom e such that

e = e2, and by property (1) in Lemma 3.

Lemma 7. If Ris hyperatomic, thenf = x—*ieLx) ¡ei is a monomorphism

from R into a direct product of division rings Di — eP.

Proof. It is an immediate consequence of Lemmas 5 and 6.

Lemma 8. The embedding in Lemma 7 has the following properties:

(1) Each factor Di = e,R is a skewdomain.

(2) If (o(a)) a£A is any family of elements of R having a supremum a in

R then for any fixed iEI, a,<a> = 0 for all aEA implies a, = 0.

Proof. Let (a(l,))«ei be a family of elements in R admitting

supremum a in R. Let iEI such that a,(a) = 0 for all aEA. To prove

that a( = 0. Here aí = eía. Set a' = a — eia. As E is orthogonal,

a? = a,¡    if p. t¿ t,

= 0     if m = i.

Then af^a¿ for all p.EI. Consequently, aM^a' for all aEA.
Then a^a', that is to say, a(a — e,a)=o2, if and only if, a2ei = 0,

equivalently oe, = 0, equivalently, at = 0.

Lemma 9. If R admits at least one imbedding as in Lemma 8, then

R has the following property:

(A) For any family (a(a))ae¿ of elements of R admitting a supremum

in R, and any bER, (¿>a(a))<*e.i admits a supremum in R equal to

6(sup„a(a)).

Proof. As (^) is left permissible, a(a)^a implies ¿>a(a) ̂ba for any

aEA, and ba is an upper bound of {baia), aEA }. Also, ba is the least

upper bound. For let ba{a) ±Zu in R. If ba ^u were not true, then for

some iEI, btat9¿ut. Then a.^O, and a,(ao> for some a0G^4 follows. As

al(a°>^al, in the skewdomain D, we must have al<a°)=at (see Lemma 2

and its proof). As bia(")^ul for all a, in particular, b,a, i = bta("°>)^u¡,

a contradiction.



262 M. CHACRON

Lemma 10. Let R be an orthogonally complete ring satisfying (A).

Let F={eiL, XEA} be an orthogonal set of idempotents in R such that

0 = x—>(e\x)xEA is a monomorphism. Then <p is an isomorphism.

Proof. For let x(X)Ee\i?, X ranging over A. As X= {x(X), XEA}

is orthogonal it admits a supremum x in R. Evaluating the Xth pro-

jection of x on e\R we get

xx = e\x = e\ /supx^'N = sup (e\xi")) = sup{0, e\x(X)¡ = e\x(X) = x(X)
VEA ) it

for all XEA. Thus <j> is epi. The lemma is established and implies im-

mediately together with Lemmas 7, 8 and 9 the required splitting

oiR.
Remark. As shown by Abian, Property (A) holds for any com-

mutative ring R without nilpotent elements [l, Lemma 8]. Note also

that Abian's proof of (A) does not use subdirect representation of R.
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