DIRECT PRODUCT OF DIVISION RINGS AND A PAPER OF ABIAN

M. CHACRON¹

ABSTRACT. It is shown that the rings under the title admit an order-theoretical characterization as in the commutative case studied by Abian.

Introduction. Let R be an associative ring equipped with the binary relation (\leq) defined by $x \leq y$ if and only if $xy = x^2$ in R. In this paper, it is shown that (\leq) is an order relation on R if and only if, R has no nilpotent elements (\neq 0). Conditions on the binary relation (\leq) in order that R split into a direct product of division rings are then studied in the light of Abian's result [1, Theorem 1]. Using similar argumentation and using certain subdirect representation of rings with no nilpotent elements, one obtains a complete similarity with the commutative case (yet, no extra complication in the computations).

Conventions. R is an associative ring which is, unless otherwise stated, with no nilpotent elements (other than 0). As a result of [2], R can be embedded into a direct product of skewdomains, $R \to \prod_{i \in I} R_i$ (that is to say, rings R_i having no one-sided divisors of zero). The former embedding is fixed throughout the paper. It is therefore legitimate to identify any element x in R with the family consisting of all its projections $(x_i)_{i \in I}$. Finally, all definitions in [1] are extended (verbatim) to the present case (of a noncommutative ring R) and are freely used throughout.

In this paper we offer the following generalization to the noncommutative case of Abian's result [1, Theorem 1].

THEOREM. Any ring R equipped with its binary relation (\leq) defined by $a \leq b$, if and only if $ab = a^2$, is isomorphic to a direct product of division rings if and only if (\leq) is an order relation on R such that R is hyperatomic and orthogonally complete (in the sense of Abian).

The 'only if' is just a combination of the forthcoming Lemma 2

Received by the editors June 17, 1970.

AMS 1969 subjec telassifications. Primary 1646; Secondary 0685.

Key words and phrases. Noncommutative rings, rings having no nilpotent elements ≠0, subdirect product, subdirect representation, hyperatomic, idempotent hyperatom, supremum.

¹ This research has been supported partly by a summer fellowship (SRI, Branch at Université Laval) partly by grant A4807 of the NRC of Canada.

and a partial duplication of Abian's proof. (See first part of the proof of [1, Theorem 1].) The 'if' breaks into several lemmas some which are of independent interest.

LEMMA 1. If $a \le b$ is an order relation on a ring R, then R has no nilpotent elements $(\ne 0)$.

PROOF. Assume $x^2 = 0$ in R. Then $x \le 0$. However 0 is the least element under \le . Therefore x = 0.

LEMMA 2. If R has no nilpotent elements, then (\leq) is a (multiplicatively) permissible (that is to say, $a \leq b$ implies $ac \leq bc$ and $ca \leq cb$ for all $c \in R$) order relation on R.

PROOF. Using the mentioned embedding of R (see Conventions), it suffices to show the result for a skewdomain. In this case the occurrence $ab=a^2$, is equivalent with a=0 or a=b. Now the latter occurrence defines a binary relation which is obviously a permissible order relation on R. Lemma 2 is established.

Some known properties of rings without nilpotents R which follow at once from the considered embedding of R, are collected without proof in the next lemma.

LEMMA 3. If (\leq) orders R, then

- (1) Any idempotent element $e(=e^2)$ of R is in the center of R, and $ex = xe \le x$ for all $x \in R$.
- (2) For any a, $x \in R$ (i) $x^2a = x^2$ implies xa = x; (ii) $x^2a = x$ implies xax = x; (iii) $x^2a = 0$ implies xa = 0.

We assume henceforth that R is ordered, or equivalently (Lemmas 1 and 2), that R has no nilpotent elements. Along the lines of the proof of [1, Theorem 1] let us now show

LEMMA 4. Let a be an hyperatom of R. For any r such that $ar \neq 0$, ar is an hyperatom.

PROOF. Let $x \le ar$ in R. By definition [1, Definition 1, (6)], there is s so that $xs \le ars = a$. As $x \le ar$, $x^2 = xar$ implies $x^2s = xars = xa$, and $x^2 = (xa)r = (x^2s)r = x^2(sr)$. Then (Lemma 3, (2)(i)) x = x(sr) = (xs)r. As a is an hyperatom, either xs = 0 and so, x = (xs)r = 0, or xs = a in which case x = ar. Finally, assume $(ar)y \ne 0$ for some given y. Then, for t = t'r with t' so that a(ry)t' = a, we get (ar)yt = a(ry)t'r = ar proving thereby that ar is an hyperatom.

LEMMA 5. Let $x \neq 0$ in R. Assume that $q \leq x$ for some hyperatom $q \neq 0$. Then there is an idempotent hyperatom e such that $ex \neq 0$. PROOF. As $q \neq 0$, $q^2 \neq 0$. Then $q^2s = q$ for some s. It follows (Lemma 3, (2)(iii)) that qsq = q. Set e = qs = sq. As $q \neq 0$, $e \neq 0$ and by Lemma 4, e is an idempotent hyperatom. Evaluating ex, we get $ex = qsx = sqx = sq^2 = qsq = q \neq 0$.

LEMMA 6. The set $E = \{e_i, \iota \in I\}$ of all idempotent hyperatoms of R is an orthogonal set and each of its elements e_i generates a division ring $D_i = e_i R$.

PROOF (SKETCHED). By definition of an hyperatom e such that $e = e^2$, and by property (1) in Lemma 3.

LEMMA 7. If R is hyperatomic, then $f = x \rightarrow (e_i x)_{i \in I}$ is a monomorphism from R into a direct product of division rings $D_i = e_i R$.

Proof. It is an immediate consequence of Lemmas 5 and 6.

LEMMA 8. The embedding in Lemma 7 has the following properties:

- (1) Each factor $D_i = e_i R$ is a skewdomain.
- (2) If $(a^{(\alpha)})_{\alpha \in A}$ is any family of elements of R having a supremum a in R then for any fixed $\iota \in I$, $a_{\iota}^{(\alpha)} = 0$ for all $\alpha \in A$ implies $a_{\iota} = 0$.

PROOF. Let $(a^{(\alpha)})_{\alpha \in A}$ be a family of elements in R admitting supremum a in R. Let $\iota \in I$ such that $a_{\iota}^{(\alpha)} = 0$ for all $\alpha \in A$. To prove that $a_{\iota} = 0$. Here $a_{\iota} = e_{\iota}a$. Set $a' = a - e_{\iota}a$. As E is orthogonal,

$$a'_{\mu} = a_{\mu}$$
 if $\mu \neq \iota$,
= 0 if $\mu = \iota$.

Then $a_{\mu}^{(\alpha)} \leq a_{\mu}'$ for all $\mu \in I$. Consequently, $a^{(\alpha)} \leq a'$ for all $\alpha \in A$. Then $a \leq a'$, that is to say, $a(a - e_i a) = a^2$, if and only if, $a^2 e_i = 0$, equivalently $a e_i = 0$, equivalently, $a_i = 0$.

Lemma 9. If R admits at least one imbedding as in Lemma 8, then R has the following property:

(A) For any family $(a^{(\alpha)})_{\alpha \in A}$ of elements of R admitting a supremum in R, and any $b \in R$, $(ba^{(\alpha)})_{\alpha \in A}$ admits a supremum in R equal to $b(\sup_{\alpha} a^{(\alpha)})$.

PROOF. As (\leq) is left permissible, $a^{(\alpha)} \leq a$ implies $ba^{(\alpha)} \leq ba$ for any $\alpha \in A$, and ba is an upper bound of $\{ba^{(\alpha)}, \alpha \in A\}$. Also, ba is the least upper bound. For let $ba^{(\alpha)} \leq u$ in R. If $ba \leq u$ were not true, then for some $\iota \in I$, $b_{\iota}a_{\iota} \neq u_{\iota}$. Then $a_{\iota} \neq 0$, and $a_{\iota}^{(\alpha 0)}$ for some $a_{0} \in A$ follows. As $a_{\iota}^{(\alpha 0)} \leq a_{\iota}$, in the skewdomain D_{ι} we must have $a_{\iota}^{(\alpha 0)} = a_{\iota}$ (see Lemma 2 and its proof). As $b_{\iota}a_{\iota}^{(\alpha)} \leq u_{\iota}$ for all α , in particular, $b_{\iota}a_{\iota} = b_{\iota}a_{\iota}^{(\alpha 0)} \leq u_{\iota}$, a contradiction.

LEMMA 10. Let R be an orthogonally complete ring satisfying (A). Let $F = \{e_{\Lambda}, \lambda \in \Lambda\}$ be an orthogonal set of idempotents in R such that $\phi = x \rightarrow (e_{\Lambda}x)_{\lambda \in \Lambda}$ is a monomorphism. Then ϕ is an isomorphism.

PROOF. For let $x^{(\lambda)} \in e_{\lambda}R$, λ ranging over Λ . As $X = \{x^{(\lambda)}, \lambda \in \Lambda\}$ is orthogonal it admits a supremum x in R. Evaluating the λ th projection of x on $e_{\lambda}R$ we get

$$x_{\lambda} = e_{\lambda}x = e_{\lambda}\left(\sup_{\mu \in \Lambda} x^{(\mu)}\right) = \sup_{\mu}\left(e_{\lambda}x^{(\mu)}\right) = \sup\left\{0, e_{\lambda}x^{(\lambda)}\right\} = e_{\lambda}x^{(\lambda)} = x^{(\lambda)}$$

for all $\lambda \in \Lambda$. Thus ϕ is epi. The lemma is established and implies immediately together with Lemmas 7, 8 and 9 the required splitting of R.

REMARK. As shown by Abian, Property (A) holds for any commutative ring R without nilpotent elements [1, Lemma 8]. Note also that Abian's proof of (A) does not use subdirect representation of R.

ACKNOWLEDGEMENT. The author thanks the referee for his kind suggestions.

REFERENCES

- 1. Alexander Abian, Direct product decomposition of commutative semisimple rings, Proc. Amer. Math. Soc. 24 (1970), 502-507.
- 2. V. A. Andrunakievič and Ju. M. Rjabuhin, Rings without nilpotent elements, and completely prime ideals, Dokl. Akad. Nauk SSSR 180 (1968), 9-11=Soviet Math. Dokl. 9 (1968), 565-568. MR 37 #6320.

UNIVERSITY OF WINDSOR, WINDSOR, ONTARIO, CANADA

CARLETON UNIVERSITY, OTTAWA, ONTARIO, CANADA

Université Laval, Québec, Québec, Canada