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THE CATEGORIES OF ¿-RINGS ARE EQUIVALENT

R. W. STRINGALL

Abstract. Let p and q be prime numbers. Let Rp and Rq denote,

respectively, the categories of /»-rings and ç-rings with ring homo-

morphisms as morphisms. Then RT and R, are equivalent cate-

gories. In particular, the category of all Boolean rings is equivalent

toRr.

Stone, in [5], remarked on the now verified close connection be-

tween the representation of Boolean rings and direct decompositions

of rings. Using some elementary properties of radical rings, Theorem

5.10 of [7] and the result mentioned in the abstract, it is easily shown

that there is a useful extension of Stone's connection to the study of

decompositions of Abelian ¿-groups (see [ó]). Moreover, if a theorem

of R. S. Pierce [4, 14.3] is considered, then it can be seen that this

extended connection has general application to the structure problem

of Abelian ¿-groups. In addition, interest in the representation

theorem of this note lies in the connection between ¿-rings and the

theories of Stone, Carathéodory and Boole and Whitehead.

Let ¿ be a prime number. A nontrivial commutative, associative

ring R is called a p-ring or generalized Boolean ring if it satisfies the

identities xp=x and px = 0. If ¿ = 2, then R is called a Boolean ring.

Stone [S] has demonstrated that every Boolean ring is isomorphic

to a ring of subsets of some set. McCoy and Montgomery [2] point

out that this result is equivalent to the theorem that every Boolean

ring is isomorphic to a subring of a direct sum of rings F2 (Fp denotes

the prime field of characteristic ¿). Moreover, they prove, using

methods similar to those employed by Stone, Alexander and Zippin,

that this result generalizes to the theorem that every ¿-ring is iso-

morphic to a subring of a direct sum of fields Fp. Clearly, every sub-

direct sum of fields FP is a ¿-ring and this result is, consequently, a

"complete characterization" of ¿-rings.

The direction of this note will be to assume the above characteriza-

tion of ¿-rings and then to show, using this setting, that the categories

Rp and R2 are equivalent.
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Let R be any subring of ü7er Py where Ry=Fp VyET. Let irT be

the natural projection of R onto Ry and denote the identity of Ry by

17. For each subset AQT, define <r(A) EIITer Ry by

xTcr(^l) = 17       if 7 G A,

= 0 if y G A.

Clearly, if rEjJ.Ry and if A((r)= {7Gr:7rYr = i-l1,} for each i — 0,

1, • ■ • , ¿ — 1; then r can be written uniquely in the form r =

T.Uio-(Ai(r)).
Results similar to the following proposition can be found in papers

by Foster [l ] and Zemmer [8].

Proposition 1. Let REYLi^t Ry, rER and r=^JZ0licr(Ai(r)).

Then UfrJ Ai(r)=Y, Ai(r)r\Aj(r) = 0 if i^j and a(Ai(r))ER if
i^O.

Proof. It is first noted that while R may not have an identity it is

possible to find a subring 5 of R with identity which contains r. The

identities rp~lr = rp = r and rp~1(rp~1s) = rp~ls for all s ER imply that

rp~lR = S is such a subring. Moreover if e is the identity of S, then,

clearly, e = rp~1. For k^O, consider the product

s= u (ie-r)ES.
bdc; *—0 ,1, ■ • • ,p—1

It will be shown that s= — <j(Ak(r)). Suppose y EAk(r), themr^s) =0

since yEAi(r) for some ij^k. Moreover, an application of Fermat's

theorem yields iry(ie — r) = iryirp~1 — ■wyr = i(iryr)p~]- — ryr = ily — ily = 0.

UyEAk(r),then

VyS = u M«' - 0) = II (i(*v)p_1 - iryr)
i9ik\i=0,l ,••• ,p—l i?i*;t=0,l,--- ,p—1

II (i-ly-k-ly)
iyi;i=0 ,!,•" ,p—1

= ly- [(0 - k)(i - k)(2 - k) ■ ■ ■ ((k - 1) - k)

■((k+i)-k) ...((p-D-k)}

= l7-(¿-l)L

Now by Wilson's theorem (¿ —1)!= — 1 (modulo p). Hence, a(A¡,(r))

= — sESQR. The remainder of the result is obvious.

It is known that if 5 is any associative ring and if I(S) represents

the collection of all central idempotents in S, then I(S) can be made

into a Boolean ring, (I(S), ©,  •), by defining e®f = e+f—2ef and
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e-f = ef for all e, fEI(S). The following proposition gives a more

descriptive representation of I(R) for the p-ring R.

Proposition 2. Let RQY[yer RyandletK(R) = {AQY:o-(A)ER}.
Then K(R) together with the operations A +B = (AVJB) — (AP\B) and

A-B = AC\B forms a Boolean ring of subsets of T. Moreover, I(R)

= (r(K(R)) and the correspondence A*-^a(A) is an isomorphism between

the Boolean rings K(R) and I(R).

Proof. An application of Fermat's theorem yields for each r = r2

ER, r = rp~l=a(A) where A= {yEYiWyr^O}. Conversely, if A

EK(R), then a(A)EI(R). Hence I(R) = \a(A):AEK(R)}. It fol-
lows that <r is one-to-one and onto I(R). That K(R) is a Boolean ring

and a an isomorphism follows by standard arguments using the

identities:
o-(A ■ B) = o(A C\ B) = <r(A) -o-(B)

and

cr(A+ B) =<r(A\J B- AC\B) = o-(A) + o(B) - 2o(A)a(B)

= o-(A) ® <i(B).

Let (B be any Boolean ring of subsets of Y. The set {<r(A) :A E<$>}

generates a subring of H^er Ry Denote this subring by £((B). The

following corollary to Propositions 1 and 2 is now apparent.

Corollary 1. If R is a subring of ü7er -fry, then £(K(R))=R.

Moreover, if (B is any Boolean ring of subsets of Y, then (B = K(£((&)).

With the aid of the Stone representation theorem for Boolean rings:

Corollary 2. If p is prime, then every Boolean ring is isomorphic to

the Boolean ring of idempotents of some p-ring.

Proof. Let ffibea Boolean ring. Then by Stone's theorem, (B is

isomorphic to a ring of subsets of some set Y. Thus, £(($>) C liver -R?

is a p-ring which, by Proposition 2 and Corollary 1, contains the

desired isomorphic copy of <S>.

Theorem 1. Let R, S be p-rings and I(R), I(S) the corresponding

Boolean rings, (i) Every homomorphism R—*S restricts to a Boolean

homomorphism I(R)-^>I(S). (ii) Every Boolean homomorphism I(R)

-^I(S) is the restriction of a unique ring homomorphism R-^S.

Proof. It may be assumed that R and S are subrings of ü7er Ry

for some Y.

(i) If h:R—>S is any ring homomorphism, then for eit e2EI(R),

h(ei-e2) = h(ei)h(e2)
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and

h(ex ® e2) — h(ei + e2 — 2e!e2) = h(ei) + h(e2) — 2h(e{)h(e2)

= h(ei) ® h(e2).

(ii) Clearly, by Proposition 1 there can exist at most one homo-

morphism R-+S which restricts to a given Boolean homomorphism

I(R)-^>I(S). Let g:I(R)—*I(S) be a Boolean homomorphism. For

r= Tfi-l i<r(Ai(r))ER, define h(r) = J>z\ ig(ar(Ai(r))). The map h is
well defined since the representation r= E*~J ia(Ai(r)) is unique.

Moreover, h agrees with g on I(R). To complete the proof of (ii), it is

only necessary to show that h is a ring homomorphism. To do this

three items are first noted :

(1) Ur,sERandiiO<i0<p, then Ao(r)nAi0(s)EK(R) and hence

a(Ao(r)r\Aiç(s))ER- This is immediate from Proposition 1 and the

fact that Boolean rings are closed with respect to relative comple-

mentation. For if r, sER and H9¿Q, then Ai„(s)EK(R), Ai(r)EK(R)

for all i^O, Ai(r)r\Aj(r) = 0 for t9*j and U£j At(r) =T. It follows

that Ui?,o Ai(r) EK(R) and Ah(s)H¿0(r) = Ak(s) -U*„ A¡(r) EK(R).
(2) Suppose Ai, A2, ■ • ■ , A„EK(R) are disjoint, a,- is an integer

for i = l, 2, • • ■ , ra and r= 2Z?_i o¿o-(^4i). Then S"=i aih(o-(Ai))

= St-i kh(a(Ak(r))) =h(r). To prove this, first note that a_1ha(Ai),

a~lh<r(A2), • ■ ■ , o~iha(An)EK(S) are disjoint since, if i^j and

<r-1ha(A-)r\o-ïh(r(Aj)^0, then 0^ha(Ai)-h<T(Aj) =h(a(Ai)a(A¡))
= h(o(Ai(~\A¡)) =h(0), a contradiction. Since, in addition to Au • • • ,

An forming a disjoint collection

Ak(r) = \}{Ai\ai = k (mod p)\    for k = 1, • • • ,p — 1,

it follows that

h(a(Ah(r))) = £        ¿(o-U.)).
a¿=A (mod p)

Therefore, for & 7e 0,

M(<r(^(r))) =        S       aih(a(Ai))
a,=k (mod p)

and

h(r) = £ M(<r(¿*M)) = £       £       a^U.)) = Z <M*(<r(¿.))-
k=l k=l o,-=fc (mod p) t=l

(3) If yl and B are disjoint members of K(R), then ha(A)®}ux(B)

— hir(A) -\-ha(B). This follows since Ä = g on I(R) and
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go-(A) © go-(B) = ga(A) + ga(B) - 2(ga(A))(gc(B))

= g<r(A) + g<r(B) - 2g(a(A)-„(B))

= g*(A) + ga(B) - 2go-(A r\ B)

= g«(A) + go-(B).

Now suppose r — 2*-o io~(Ai(r)) and 5 = ^flo io~(Ai(s)) are elements

ini?. Then, for each y ET,

P—i p—i

">(r + s) = Ty £ io(Ai(r)) + X io-(Ai(s))
t=0 1=0

= Ty   £   (* +./>(J4<(r)n¿y(»).
i=0;/~0

Hence

r + *=  E (i + ivu.wn^i))
i=0;>'=0

and by (1) the sets Ai(r)i>\Aj(s) are disjoint members of K(R) pro-

vided i and j are not both zero. Thus, by (2),

h(r + s) =     £    (i + /)A(<K^W r\ Ai(s))).

Now, UfTo1 Ai(s) =T and the sets Ai(r)r\Aj(s) are disjoint. Moreover,

Ai(r)i^Aj(s)EK(R) if one, î or/ is not zero. Thus for i?*0,

ho-(Ai(r)) = h*(X) (At(r) C\ Ai(s))\ = AoY £ (At(r) H í4,(í)))

where the latter sum is that in K(R), (see Proposition 2). Continuing,

Ao-U.to) = h(a(Ai(r) r\ A0(s))

© o-(^,(r) H ^(j)) © • • • © <x(Ai(r) (~\ A^s)))

since ff is an isomorphism of K(R) onto /(i?). Moreover, using the fact

that h restricted to I(R) is a Boolean homomorphism and applying (3),

Äo-U.M) = h<r(Ai(r) r\ A0(s))

© ha(Ai(r) r\ Ax(s)) © • • • © hff(A{(r) C\ A^s))

= EAo-U.Wn^(5)).
3=0
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Thus,

h(r) = £ ik(a(Ai(r))) = £ £ iho-(Ai(r) H Aj(s)).
«=i 1=1 y=o

Similarly,

AW = T.jhMAtâ)) = Z S j'M^iW H ¿,(s))
i-i y-i <-o

it follows that h(r+s) =h(r) +h(s).

To show that h(r)-h(s) =h(rs), note that

rs = (ï>(^(r))) • (X>(¿y«))

»=1 ;=1

and

*(«) = Z £ i/M¿<to n ^))    by (2).
<=i y-i

On the other hand,

Hr)h(s) = (£¿M¿;W))(£V(^«))

-2£v*(*(¿««))*'<<k¿í«))«-i j-i

1=1 J=l

<=1   /—l

Henee, h(r)-h(s) =h(rs).

The proof of the following corollary follows from the observation

that the correspondence R—>I(R) together with the restriction map

g—>g I" I(R) is a full, representative, faithful functor from the category

of all p-rings to the category of all Boolean rings [3].

Corollary 3. If p and q are prime members, then the categories Rp

and Rq are equivalent.
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