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A FUNCTOR TO RINGED SPACES1

GAIL L. CARNS

Abstract. With the set of orders 0 on a field and the Harrison

topology induced from the set of all primes as a base space we define

a ringed space (0, 5). For each field homomorphism we find an

associated ringed space morphism producing a contravariant func-

tor from the category of fields to the category of ringed spaces. An

equivalence relation ~ is defined on the set of orders and again a

ringed space (0/~, ff) and a contravariant functor from fields to

ringed spaces is obtained along with a natural transformation from

the first to the second functor. Finally, we obtain a ringed space

morphism (0/~, §)-*(Y, Or) where Y is the spectrum of the ring

of bounded elements and 0r is the structure sheaf.

1. Introduction. This paper is concerned with the set of orders

0 on a field F with the topology induced from the Harrison topology

on the set of all primes. With 0 as the base space we shall define a

sheaf of rings 5\ Thus for each field we have an associated ringed space

(0, ÍF). For each field homomorphism we find an associated ringed

space morphism producing a contravariant functor from the category

of fields to the category of ringed spaces. The reason for using the

Harrison topology is that this is the topology which guarantees the

functions used in defining the sheaf will be continuous. Next, an

equivalence relation ~ is defined on 0 and we obtain another ringed

space (G/~, î) and another contravariant functor. We also find a

ringed space morphism (0, ff)—»(0/~, 50 producing a natural trans-

formation from the first functor to the second. Finally, we obtain a

ringed space morphism (0/~, ff)—>(F, 0r) where Fis the spectrum of

the ring of bounded elements of F and Oy is the structure sheaf. We

will use the definitions and notations of [8, Chapters 3 and 4].

2. A note on ringed space morphisms. The ringed spaces to be

considered in this section are those where the sheaves are sheaves of

functions to rings, the restriction maps are the restriction maps in the

usual sense, and the rings of functions are equipped with pointwise

operations. All definitions in this section will be taken from [5].
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Proposition A. Let X and Y be topological spaces, yp:X-*Y a

continuous map, and (X, 3\x) and (Y, iy) ringed spaces. Suppose that

\j/ has the property that if fE^y(U) then f\¡/\f-\U)E^~1^x(U) where

^_1ix denotes the direct image of ïx under \p. Define 6(U)'.^y(U)

-^-^x(U) by 6(U)(f)=fip and let 0={$(U):U in open Y\. Then
(\f/, 6):(Y, £Fy)—*(X, îx) M a ringed space morphism.

The proof is straightforward.

3. The sheaf SF. Let F be a field and 0 the set of orders on F where

an order is a subset« that is closed under multiplication, addition, and

division such that «H-a = \0\ and a\J —a = F. The Harrison

topology on 0 is the topology for which

[XG = {aE e:Gr\a = 0):G is a finite subset of F]

is a base. It is well known [ó] that the Harrison topology on the set of

all pri mes is compact. Also the set of orders forms a closed subset of the

set of primes hence 0 is a compact topological space.

Recall that if a field F is orderable then the field Q of rational num-

bers is a subfield of F. Thus for «E© and bEF we can define (b, a)

= sup {rEQ'-b — rEct). Note that for fixed a this defines a place

F—>R with valuation ring Ba. Let U be an open subset of 0, a real

valued function/: U—+R is said to be good on U if there exists bEF

such that/(a) = (b, a) for all aE U. A function /: U—>R is said to be

locally good on U if for each aEU there exists Va open in U such that

/restricted to Va is good on Va and «G Va.

Proposition. Iff: U—»i? is locally good then f is continuous.

Proof. Clearly it suffices to prove that/good on U implies/ is con-

tinuous thus we assume that/(a) = (b, a) for all aE U. Since (b, a) is

linear in the first coordinate [2] all we need to show is that/-1(0, °o)

is open in U.

i~1(0, a°) = {a E U'.b — 1/n E a for some n =g 0}

—  {a E &'-b — 1/n E a for some ra ̂  0} P\ U

= Ö {a E 6:b - 1/nEa] Pi U
n=l

00

= U {a E Q'A/n — b Ea) CMJ which is open.
71=1

We shall now define a sheaf of rings, ÍF, on 0 by letting £F((7)

= {/:/ is locally good on   U)  and for  UQV the restriction map
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ff(F)—>ff(C7) will be defined to be the restriction map in the usual

sense.

Theorem 1. ff, defined above, is a sheaf of rings where ff(t/) is

equipped with pointwise operations.

Proof. To prove that ff(Z7) is a ring for each U open in 0 we need

only prove that if fu /2Gff(t/) then fi+ft, fifiE$(U). The other
conditions are routine verifications. For l^i^2 let/iGff(£0 and

ßEU then there exists Vi open in U and biEFsuch that ßE Vi and

fi(a) = (bit a) for all aEV{. Then ßEV=Vxr\V2 is open in U and

(/i +/i)(«) =fi(a) +fi(a) = (bu a) + (b2, a) = (b1+b2, a) for all aEV,

also (fif2)(a) =fi(a) f2(a) = (bu a)(b2, a) = (bib2, a) for all a G V hence

/1+/2,/1/2Gff(t/).

To prove that ff is a sheaf let ( Ui) be an open cover of U and (fî) a

family such that/,Gff(i/«) and/, and/,- have the same restriction to

UiCWj for all i and j. We need to find a unique fE$(U) such that/

restricted to Z7< is /,-. The only possible definition for / is f(a) =fi(a)

where aE Ui hence we need to show that the/ just defined is locally

good on U. Let aEU, then there exists i such that a G Ui and hence

there exists V open in Ui (and thus open in U) and bEF such that

aE V and/03) =/,(0) = (&, |8) for all ßE V. Thus/ is locally good on U

completing the proof.

It should be pointed out that in no part of the proof of Theorem 1

did we need to know which topology we were considering. Hence for

any topology on 0 the presheaf of locally good functions is a sheaf of

rings.

If we now let h:Fi—*Fi be a field homomorphism we obtain an

induced ^: 02—»0i defined by \f/(a) = h~i(a) where 0i and 02 are the set

of orders on Fx and i^ respectively.

Lemma. yV, defined above, is a continuous map.

Let ffi and ff2 be the sheaves of locally good functions on 0i and 02

respectively. Since \f/ is continuous we may consider the direct image

ip-^i of ff2 under $. If we define e^-.^U)^-^^) by 6(U)(f)
=fi¡/ we find the following holds.

Lemma, (t]/, 6)'.(62, 32)—>(6i, ffi) is a ringed space morphism.

Proof. We must show that for each/Gffi(t/), (0)(U)(f) is locally

good on\j/~1(U). Then Proposition A finishes the proof. Let ßEty~1(U)

then\J/(ß) = h-1 (ß) = aEU. Thus íorfE^i(U) there exists Fopenin U

and &Gii such that a G V and f(<p) = (b, <p) for all <pE V. Then h(b)
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EF2,ßE^(V) and^-'(V) is open in \p~l(U). Now for <jE^-1(V) we

have

(e(U)(f))(o-) =f(h-Ko)) = (b,h~\a))

= sup{r E Q:b - rEhrx(o-))

= sup{r E Q:h(b) - h(r) E hh~\a))

= sup{r E Q:h(b) -rE hhr1^)}

= sup{r E Q:h(b) - r E <r\ = (Kb), *).

The second  to last equality holds because QcZhhrl(<x)Ç^o-.  Thus

6( U) (f) is locally good on irl{ U).
Suppose Fi-^hlF2-^h2Fi, ^i:02—>0i is induced by hu ^2:03—>02 is

induced by h2, and \p : ©3—»0i is induced by h = h2hi then clearly ^ = ^i^2.

From [5] we know that ringed spaces and ringed space morphisms

form a category with composition (^1, Bi)dp2, 62) = (^1 o \¡/2, B2oBi),

yj/i o \p2 the usual function composition and B2 o di defined using the

"direct image" functor. That is, 62 o di = ty^B^di.

Lemma. If (\¡/u di), (\p2, 02), and dp, 6) are the ringed space morphisms

induced   by   Fi—*hlF2,   F2—*h2F3,  and   Fi-^h=hlhlF3   respectively,  then

GM) = (iM0(iM«).
The proof is routine verification and hence omitted.

The previous three lemmas yield the following theorem.

Theorem 2. The map which associates with each field F the ringed

space (0, $) and with each field homomorphism h the ringed space mor-

phism (\p, 8) is a contravariant functor from the category of fields and

field homomorphisms to the category of ringed spaces and ringed space

morphisms.

4. The sheaf 5. If a and ß are orders on a field F we will say a is

equivalent to ß, denoted a~j3, if (b, a) = (b, ß) for all bEF. That is, if

both a and ß determine the same place F—*R. 0/~ will denote the set

of equivalence classes of orders on F and <p the canonical map 0—>0/~.

0/~ will be considered to have the induced quotient topology. If

äE©/~ and bEF define (b, a) = (b, a). It is easily seen that if a~ß

then Ba=Bß however the converse is not true. Thus for äGö/~

define Bs = Ba.

We will now define locally good functions on open subsets of 0/~

in a way similar to that for 0. Let U be open in 0/~. A real valued

function/on U is said to be locally good if for each «£[/ there exists
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an open set FÇ U and a bEF such that äEV and f(ß) = (è, ß) for

all/S G F.

Proposition. 7/ / is locally good on U then f<p is locally good on
<p~lU.

Proof. If aEtp~'(U) then aEU thus there exists F open in U,bEF,

such that äEV andf(ß) = (b, ß) for all ßEV. Then V = <p-*(V) is open

in <p~HU), aE V, and M/3) =/(/3) = (b, ß) = (b, ß) for all ßE V. Hence

/<p is locally good on <p-1 ( U).

For Í7 open in 0/~ define ff(i7) = {/:/is locally good on U} and for

UQ V open subsets of ö/~ define the restriction map ff(F)—>ff({7) to

be the restriction map in the usual sense.

Theorem 3. ff, defined above, is a sheaf of rings on S/~.

The proof is omitted since it is exactly the same as the proof that ff

is a sheaf of rings on 0.

Let Fi—»* F2 be a field homomorphism and notice that a~ß implies

hrl(a)^jh~1(ß). Thus we can define $ : 02/~—»0i/~ by

#(ffi) = F1^*).

Proposition. \p, defined above, is continuous.

Proof. Clearly ^i^i=fe where <pu <p2 are the canonical maps

0i—►0i/~, ©2—»02/~ respectively. <px and ^ are both continuous

hence <p\4' = 4'<P2 is continuous. But 62/~ has the quotient topology

induced by <p2 and so 1? is continuous.

Continuing in the same manner as before we define d(U):5i(U)

—^f'~1^i(U) by 6(U)(f) =f$ where $ is considered to be restricted to

if/-l(U) and ffi and ff2 are the sheaves on 0i/~ and 62/~ respectively.

Then, as in the previous section, 0 is a sheaf homomorphism ffi

—*£-1ff2 and we have the following theorem.

Theorem 4. (i£, 0) is a morphism of ringed spaces and the map which

associates with each field F the sheaf 'ff and with each field homomorphism

h the ringed space morphism ($, 0) is a contravariant functor from the

category of fields to the category of ringed spaces.

The proof is omitted.

In view of the first propositionof this section and Proposition A, §2

we can define x(£/):ff(Z7)—*p-1ff(77) by 7r(f/)(f) =/<p and we know

that (<p, ir):(0, ff)-^»(0/~, ff) is a ringed space morphism where it

= {tt(U) : U is open in 0/~}. Denote by (<p(F), w(F)) the (<p, it) just

defined.
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Theorem 5. JI= {(<p(F), w(F)):F is a field] is a natural trans-

formation from the functor of Theorem 2 to the functor of Theorem 4.

Proof. We must prove that if Fi—>hF2 is a field homomorphism

then (<pi, tti) (\p, B) = (¡?, 6)(<p2, w2) where (<px, Ti) = (<p(F{), t(Fi)) and

(<P2, tt2) = (<p(F2), ir(F2)). It is easily seen that <pi^ = f<p2 hence we need

to prove that Biri=w26. That is (<pï10)iri = ($~lir2)Ö. Thus for each

U open in ©i/~ we must prove that tprlB(U) o tti(U) =^tV2((7)

o 6(U) but this is routine.

Example. Let Q be the field of rational numbers and x an indeter-

minant. From [2] we know that Q(x) is a field with the property that

a~/3 if and only if (x, a) = (x, ß) and that/x defined by fx(ß) = (x, ß) is

a continuous one-to-one function from 0/~ onto R' where R' is the

one point compactification of real numbers. Also, from [6] we know

that 0 is compact and hence 0/~ is compact. Thus/X is a continuous

one-to-one function from a compact space onto a Hausdorff space

implying that fx is a homeomorphism. If fEQ(x) then (/, a) =

sup{rE<2:/-rEa}=sup{rE<2:/-r->(*, a)} =/((*, a))=f(fx(a)).

Thus we know that if we identify 0/~ with R' and let U be open then

a function is locally good on U if and only if it is a finite valued ra-

tional function on each connected component of U.

The ring homomorphism 7r( U) is clearly injective; however, it is not

surjective. Let a^ß be such that a<~/3, then there exists bEF such

that bEa and —bEß- Define Ua= {<rE©: — ¿>E<r} and Uß

= {aEO'.bE^}. Ua and Uß form a disconnection of the space 0 with

aEUa and ßEUß. Now define f:6-+R byf(<x) = (i, <r) = l if aEUa

and f(<r) = (2, a) =2 if aE UB. Then/E5(0) and f(a) ^f(ß) thus there
does not exist gE£F(©/~) such that g<p =/. From this example we see

that ir is a natural isomorphism if and only if a-~/3 implies a = ß.

5. Spec B. Let A be a commutative ring. Spec A = Y is the set of all

prime ideals in A For/E^4 defineD(f) = {¿>ESpec^4 :fEp] then the

set of D(f) is a basis for the Zariski topology on Spec A. If/, g in A are

such that D(f)^DD(g) then there exists ra>0 and sEA such that

g" = 5/. Define pgJ:Af—*Ag by p0,t(a/fm) =as/gmn where 4/ is the ring

of fractions of A with respect to {/" : ra ̂  0}. This association D (f) —*Af

defines a presheaf on the basis {D(f) :fEA } for the Zariski topology

and hence determines a presheaf on Y which is actually a sheaf ©r on

F called the structure sheaf [8].

If a is an order on a field F let Ba denote the valuation ring corre-

sponding to a called the ring of bounded elements, / denote the ring

of infinitesimals and B = C]{ßa'.aE6}- For X = 0/'~ and F = Spec B

define    t:X-»Y    by    ^(a)=JaC\B.     ^(D(f))={aEX:f$Ja)
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= {aEX:(f, a) 7^0} which is open since (f, ?) is continuous thus \j/ is

continuous. If we now consider the sheaf ip~ •ff we can define 0/ :

0y(Z)(f))=/3/^-1ff(/J»(/)) by Of(b/f») = (b, ?)/(/, ?)•» restricted to
i/^1 (£>(/)). It is easy to verify that df(b/fm) is locally good on ^(Dtf))

and that 6/ is a ring homomorphism.

Theorem 6. 0 determined by {df:fEß} is a sheaf homomorphism

0r—^_1ff and hence (\p, 6) is a morphism of ringed spaces.
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