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A FUNCTOR TO RINGED SPACES!

GAIL L. CARNS

ABsTRACT. With the set of orders O on a field and the Harrison
topology induced from the set of all primes as a base space we define
a ringed space (0, F). For each field homomorphism we find an
associated ringed space morphism producing a contravariant func-
tor from the category of fields to the category of ringed spaces. An
equivalence relation ~is defined on the set of orders and again a
ringed space (O/~, F) and a contravariant functor from fields to
ringed spaces is obtained along with a natural transformation from
the first to the second functor. Finally, we obtain a ringed space
morphism (0/~, F)— (¥, Oy) where ¥ is the spectrum of the ring
of bounded elements and Oy is the structure sheaf.

1. Introduction. This paper is concerned with the set of orders
O on a field F with the topology induced from the Harrison topology
on the set of all primes. With 0 as the base space we shall define a
sheaf of rings §. Thus for each field we have an associated ringed space
(0, F). For each field homomorphism we find an associated ringed
space morphism producing a contravariant functor from the category
of fields to the category of ringed spaces. The reason for using the
Harrison topology is that this is the topology which guarantees the
functions used in defining the sheaf will be continuous. Next, an
equivalence relation ~ is defined on © and we obtain another ringed
space (0/~, §) and another contravariant functor. We also find a
ringed space morphism (0, §)—(0/~, ) producing a natural trans-
formation from the first functor to the second. Finally, we obtain a
ringed space morphism (9/~, §)—(Y, 0y) where Y is the spectrum of
the ring of bounded elements of F and Oy is the structure sheaf. We
will use the definitions and notations of [8, Chapters 3 and 4].

2. A note on ringed space morphisms. The ringed spaces to be
considered in this section are those where the sheaves are sheaves of
functions to rings, the restriction maps are the restriction maps in the
usual sense, and the rings of functions are equipped with pointwise
operations. All definitions in this section will be taken from |5].
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ProposiTION A. Let X and Y be topological spaces, ¢ :X—Y a
continuous map, and (X, §x) and (Y, Fy) ringed spaces. Suppose that
Y has the property that if f&Sy(U) then f¢|¢“l(u>€|lf‘1€§x(U) where
Y~ 'Sx denotes the direct image of Fx under Y. Define (U):Fy(U)
—-15x(U) by 0(U)(f) =f and let 6= {8(U):U in open Y}. Then
W, 0):(Y, Sy)—(X, Fx) is a ringed space morphism.

The proof is straightforward.

3. The sheaf §. Let F be a field and O the set of orders on F where
an order is a subset « that is closed under multiplication, addition, and
division such that aN—a={0} and a\U—a=F. The Harrison
topology on 0 is the topology for which

{Xg = {aEO:Gf\a = ,@'}:Gisaﬁnitesubset ofF}

is a base. 1t is well known [6] that the Harrison topology on the set of
all primesiscompact. Also the set of orders forms a closed subset of the
set of primes hence 0 is a compact topological space.

Recall that if a field Fis orderable then the field Q of rational num-
bers is a subfield of F. Thus for «&0 and b& F we can define (b, @)
=sup {rEQ:b—rEa}. Note that for fixed a this defines a place
F—R with valuation ring B,. Let U be an open subset of 0, a real
valued function f: U—R is said to be good on U if there exists bE F
such that f(a) = (b, ) for all & U. A function f: U—R is said to be
locally good on U if for each a& U there exists V, open in U such that
frestricted to V. isgood on V,and aE V,.

ProrosiTION. If f: U—>R is locally good then f is continuous.

Proor. Clearly it suffices to prove that f good on U implies f is con-
tinuous thus we assume that f(a) = (b, ) for all a & U. Since (b, a) is
linear in the first coordinate [2] all we need to show is that f~1(0, «)
isopenin U.

~1(0, ) = {a € Utb — 1/n € « for some n = 0}
={a€0:b—1/nE aforsomen =0} NTU

Yy fa€0b—1/mEalNU

n=1
= U {a€0:1/n — b & a} N U which is open.
n=1

We shall now define a sheaf of rings, §, on 0 by letting F(U)
= {f:f is locally good on U} and for UCV the restriction map
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F(V)—>F(U) will be defined to be the restriction map in the usual
sense.

THEOREM 1. &, defined above, is a sheaf of rings where F(U) is
equipped with pointwise operations.

Proor. To prove that F(U) is a ring for each U open in © we need
only prove that if fi, fLEF(U) then fi+fe, fif:EF(U). The other
conditions are routine verifications. For 1<:=<2 let f;EF(U) and
BE U then there exists V; open in U and ;& F such that & V; and
fi(a) = (b, @) for all aEV;. Then &V =Vi\V; is open in U and
(fi+f2) (@) =fi(@) +fa(@) = (b1, @) + (b2, @) = (b1+Ds, @) for all aEV,
also (fufz) (@) =fa(@) fol) = (b, @) (s, @) = (bibs, @) for all @€ V" hence
fitfa ik €F(U).

To prove that & is a sheaf let (U;) be an open cover of U and (f;) a
family such that f;&%(U;) and f; and f; have the same restriction to
U.NU; for all ¢ and j. We need to find a unique f&EF(U) such that f
restricted to U; is f;. The only possible definition for f is f(a) =f:(c)
where a & U; hence we need to show that the f just defined is locally
good on U. Let a&E U, then there exists ¢ such that & U; and hence
there exists V open in U; (and thus open in U) and b& F such that
a €V and f(B) =f:(8) = (b, B) for all BE V. Thus f is locally good on U
completing the proof.

1t should be pointed out that in no part of the proof of Theorem 1
did we need to know which topology we were considering. Hence for
any topology on O the presheaf of locally good functions is a sheaf of
rings.

If we now let h: F;—F; be a field homomorphism we obtain an
induced ¥: 9;—0; defined by ¥ (a) = h~'(a) where 0; and 0. are the set
of orders on F; and F;respectively.

LEMMA. ¥, defined above, is a continuous map.

Let & and %, be the sheaves of locally good functions on 0, and 0,
respectively. Since ¥ is continuous we may consider the direct image
Y15, of F, under ¢. If we define 0(U):5:(U)—y~'5,(U) by 0(U)(f)
=fy we find the following holds.

LEMMA. (¢, 0):(0s, F2)—(O1, F1) s a ringed space morphism.

ProoF. We must show that for each fEF.(U), 0)(U)(f) is locally
good ony~1(U). Then Proposition A finishes the proof. Let B&y~1(U)
then ¢ (8) =h~1(B) =a& U. Thus for fEF,(U) there exists V open in U
and b€ F; such that aEV and f(p) = (b, ¢) for all p& V. Then k(b)
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EFR,B&y~1(V)and y~1(V) is open in y~1(U). Now for s SY~1(V) we
have

OUYN(0) = f(l () = (b, k(0))
= sup{r E Qb —rE kY o)}
= sup{r € Q:(b) — h(r) € i '(s)}
= sup{r € Q:h(d) — r € k(o) }
= sup{r € Q:h(d) — r € o} = (h(}), o).

The second to last equality holds because QChh~'(s)To. Thus
0(U)(f) is locally good on¢y~1(U).

Suppose Fi—MF,—MF; §1:0,—0; is induced by 5y, ¥2:0;—0: is
induced by ks, and ¢ :9;—0; is induced by & = hsh, then clearly ¢ =y,
From [5] we know that ringed spaces and ringed space morphisms
form a category with composition (1, 61) W2, 62) = (W1 0¥s, 62 080y),
Y1 0¥, the usual function composition and 6 o 6; defined using the
“direct image” functor. That is, 6, o 61 = (1 '02)6:.

LeEMMA. If (Y1, 61), (Y2, 02), and (¥, 0) are the ringed space morphisms
induced by F,—MF,, F,—MF;, and Fi—h="hF; respectively, then
W, 0) = (1, 61) @2, 02).

The proof is routine verification and hence omitted.
The previous three lemmas yield the following theorem.

THEOREM 2. The map which associates with each field F the ringed
space (0, F) and with each field homomorphism h the ringed space mor-
phism (Y, 0) is a contravariant functor from the category of fields and
field homomorphisms to the category of ringed spaces and ringed space
morphisms.

4. The sheaf 5. If a and B8 are orders on a field F we will say a is
equivalent to 3, denoted a~, if (b, @) = (b, B) for all bE F. That is, if
both « and 8 determine the same place F—R. 0/~ will denote the set
of equivalence classes of orders on F and ¢ the canonical map 0—0/~.
0/~ will be considered to have the induced quotient topology. If
aE0/~ and bEF define (b, &) = (b, ). It is easily seen that if a~f
then B,=Bs however the converse is not true. Thus for a&0/~
define Bz = B,.

We will now define locally good functions on open subsets of 0/~
in a way similar to that for 0. Let T be open in 9/~. A real valued
function f on T is said to be locally good if for each a ET there exists
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an open set VC U and a bEF such that aEV and f(8) = (b, B) for
allBe7V.

PROPOSITION. If f is locally good on U then fo is locally good on
¢ 1T.

ProoF. If a€¢~!(T) then @S T thus there exists V openin U, bEF,
such that a €V and f(B) = (b, B) for all BEV. Then V =¢~1(V) is open
in =Y (U), €V, and fo(B) =f(B) = (b, B) = (b, B) for all BE V. Hence
foislocally good on ¢=1(T).

For T open in 0/~ define §(TU) = {f:f is locally good on T} and for
TUCV open subsets of 0/~ define the restriction map §(V)—F(T) to
be the restriction map in the usual sense.

THEOREM 3. §, defined above, is a sheaf of rings on ©/~.

The proof is omitted since it is exactly the same as the proof that &
is a sheaf of rings on 0.

Let Fi—* F, be a field homomorphism and notice that a~f8 implies
h~1(a)~h~1(B). Thus we can define ¢ : 0;/~—0;/~ by

¥(@) = Fi(a).
PROPOSITION. ¥, defined above, is continuous.

Proor. Clearly o1 =¢¢. where ¢, ¢, are the canonical maps
01—0;/~, 0.—0;/~ respectively. ¢; and ¢ are both continuous
hence ¢} =¥, is continuous. But 9./~ has the quotient topology
induced by ¢z and so ¥ is continuous.

Continuing in the same manner as before we define 8(7):5,(T7)
—y~15,(T) by 8(T)(f) =f¢ where ¢ is considered to be restricted to
¢—1(T) and 5, and 5, are the sheaves on 0;/~ and 0,/~ respectively.
Then, as in the previous section, 8 is a sheaf homomorphism &
—J~'5, and we have the following theorem.

THEOREM 4. (¥, §) 1s a morphism of ringed spaces and the map which
associates with each field F the sheaf § and with each field homomorphism
h the ringed space morphism (J, 8) 1s a contravariant functor from the
category of fields to the category of ringed spaces.

The proof is omitted.

In view of the first proposition of this section and Proposition A, §2
we can define 7(T):5(U)—>¢~'5(T) by w(U)(f) =f¢ and we know
that (¢, 7):(0, )—(0/~, F) is a ringed space morphism where =
= {n(T):T is open in 9/~ }. Denote by (¢(F), w(F)) the (¢, 7) just
defined.
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THEOREM 5. Il = {(go(F), w(F):F is a ﬁeld} is a natural trans-
formation from the functor of Theorem 2 to the functor of Theorem 4.

ProOF. We must prove that if F;—*F; is a field homomorphism
then (g1, m1) ¢, 0) = (¥, 0)(¢2, m) where (1, m) = (¢(F1), m(F)) and
(@2, 2) = (@(F2), w(Fy)). It is easily seen that ¢ =¥, hence we need
to prove that fm =mf. That is (¢; '0)m = (F'm)d. Thus for each
U open in 0;/~ we must prove that ¢i0(T) o my(T) =y¢i'm(T)
0 8(T) but thisis routine.

ExAMPLE. Let Q be the field of rational numbers and x an indeter-
minant. From [2] we know that Q(x) is a field with the property that
a~ if and only if (x, a) = (x, B) and that f, defined by f.(8) = (x, B) is
a continuous one-to-one function from 0/~ onto R’ where R’ is the
one point compactification of real numbers. Also, from [6] we know
that O is compact and hence ©/~ is compact. Thus f is a continuous
one-to-one function from a compact space onto a Hausdorff space
implying that f, is a homeomorphism. If fEQ(x) then (f, a)=
sup {r€Q:f—rCal} =sup{r€Q: —r>(x, o)} =f((x, @) =f(f.(a)).
Thus we know that if we identify O/~ with R’ and let U be open then
a function is locally good on U if and only if it is a finite valued ra-
tional function on each connected component of U.

The ring homomorphism 7 (U) is clearly injective; however, it is not
surjective. Let @78 be such that a~, then there exists 8E F such
that bEa and —bEP. Define U.={0c€0:—bCa} and Us
= {aEO:bEa}. U. and U form a disconnection of the space 0 with
ac U, and B& Us. Now define f:0—R by f(e)=(1, o)=1if cE U,
and f(¢) = (2, 0) =2 if 6 € Us. Then fEF(0) and f(a) ~f(8) thus there
does not exist gEF(0/~) such that go =f. From this example we see
that 7 is a natural isomorphism if and only if @~ implies a =g.

5. Spec B. Let A be a commutative ring. Spec 4 = ¥ is the set of all
prime ideals in 4. For fE 4 define D(f) = { pE&Spec A:f&p} then the
set of D(f) is a basis for the Zariski topology on Spec 4.1f f,gin 4 are
such that D(f)2D(g) then there exists #>0 and s€EA4 such that
g"=sf. Define p, s: 4;—A4, by p,s(a/f™) =as/g™ where 4; is the ring
of fractions of A with respect to {f*:#2=0}. This association D(f)—4;
defines a presheaf on the basis {D(f):fEA4} for the Zariski topology
and hence determines a presheaf on ¥ which is actually a sheaf 0y on
Y called the structure sheaf [8].

If a is an order on a field F let B, denote the valuation ring corre-
sponding to « called the ring of bounded elements, J denote the ring
of infinitesimals and B= {Ba:aEO}. For X =9/~ and Y =Spec B
define Y:X—Y by ¢@=J.NB. ¢ (D)= {aEX:f& ]}
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= {aEX: (f, @) 0} which is open since (f, ?) is continuous thus y is
continuous. If we now consider the sheaf y~!§ we can define 6;:
or(D(f)) = Bi—¥~'5(D(f)) by 6;(b/f) = (b, ?)/(f, )™ restricted to
V1(D(f)). Itis easy to verify that 6,(b/f™) is locally good on ¢~*(D(f))
and that 6, is a ring homomorphism.

THEOREM 6. 0 determined by {0, °f EB} is a sheaf homomorphism
Oy—Y'F and hence (Y, 0) is a morphism of ringed spaces.
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