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COMPLETENESS OF {sin nx+Ki cos wx}

JONATHAN I. GINSBERG1

Abstract. Let C[a, b] be the space of continuous functions on

the interval [a, b]. It is shown that the set of functions

{sin nx+Ki cos nx}%= i, K?£±l, is incomplete in C[0, x+a],

a>0.

In [l] it was proved that the set of functions {sin wx+X cos nx;

n = l, 2, • • • } is complete in C[0, ir] if and only if \ = Ki with

— 1 ̂ K^ 1 and Kt¿0. When K = l or K= — 1, we have, respectively,

the sets {ie~inx] or { —ieinx], each of which is complete in C[0, 2x — e]

for any €>0 [2, p. 3]. If, on the other hand, K = 0, our set of functions

is {sin nx], and this set is not complete in C[0, ir] even if we adjoin

l^to it, because only functions taking the same value at 0 and at t

can be approximated by linear combinations of its members. The

question arises as to whether the "largest" a permitting completeness

of {sin nx+Ki cos nx] in C[0, x+a] might depend continuously on

if for — 1 ̂ K ^ 1. The purpose of this note is to show that the answer

to that question is negative.

Theorem. If K~9¿±\, the set of functions {sin nx+Ki cos nx;

n=\, 2, • ■ • ] is not complete in C[0, 7r + a] for any c>0.

Proof. By the above cited result of [l], it is only necessary to

consider the case when — \<K<\ and Ky^O.

We have

(ir-i)tr .      i + k     -\
sin nx + Ki cos nx =-   e'nx-e~inx   ,

2       L 1 - K        J

so, reasoning by duality, we can establish the theorem by producing

a bounded function f(B), not identically zero, with

f'+T 1 + K        1
(1)      J        \eM - —— e-*"\f(fl) d9 = 0,       » - 1, 2, ••• .

Suppose F(z) is analytic and bounded in \z\ <1, and continuous up
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to \z\ =1 save perhaps at 1 and — 1. Then, by elementary Fourier

series theory,

r2*r 1 + P "ir 1 + K       I
I        Fie«) +-?(«-*)      eint-e-'»9 \d6 = 0

for n = 1, 2, • • • . It will thus be enough to construct such a function

P with
1 + K

fid)=Fie»)+---Fie'«)
1   —  A

vanishing identically on [îr+a, 2ir] but not on [O, 27r]; (1) will then

hold for this/.

The function piz) = — i(l+z)/(l— z) maps |z|<l conformally

onto the lower half plane, taking — 1 to 0, i to 1, and 1 to ». If, then,

r<l is very close to 1 and t<6<2it, we see, as t decreases from 0 to

— 9, that arg pireH) first increases by almost it as t passes through

the value ir, then decreases by almost ir as í passes through 0, and

finally increases by almost w again as t passes once more through w,

going towards — 6. The net change in arg pireu) is thus about x as

í decreases from 6 to — 6, when ir<6<2w. At the same time, we have

\pirei°)\=\pire-i°)\.

For |z| <1, take

(2) liz) = [piz)](1/l*'> i°g«i-x>/<i+*»+i

using the branch that makes ¿(z)—>1 as z—n, and for 0^0, ir we define

/(e*9) as limr-»i lire*6). The preceding discussion then shows that

1 - K
Ue-i«\ — \eiirpieie)Yllri) iog((i-Ä)/o+x))+i —_He*6)

1 + K

from Tr<B<2ir, whence

1 + K
(3) Z(0 +-l(e-iS) =0,        7T < 6 < 2ir.

1 — K

Now take any nonzero, continuously twice differentiable function

u(0), periodic of period 2w, and, in [0, 2w], identically zero outside

the interval [it —a, 7r+a]. We furthermore require, in [ir — a, ir+a],

that u(w — t) = —u(ir-\-t). It is then clear that u(—6) = —u(ff).

Let U(z) be the function continuous in \z\ ^1 and harmonic in

| z| <1 satisfying \J(eie) =u(0), and let V(z) be a harmonic conjugate

of U(z). Because u(d) is so well behaved, Viz) is actually continuous

up to | z\ =1 [3, Chapter VII], and is infinitely differentiable near 1
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on \z\ =1 because U(z) vanishes identically there. Add, if necessary,

a constant to V so as to make V(l) =0; we will then have V(z) =

0(1—z) for \z\ gl, z—>1, and if m(z) =U(z)-N'F(z), m(z) is analytic

in |z| <1, continuous up to |z| =1, and

(4) m(z) = 0(1 - z)       forz-»l.

Since \J(ei,)=u(B) is an odd function of 8, V(eie) is an even one [3,

p. 50, formula(l)], and we see that

(5) m(e~i>) = m(ea) - 2u(6).

We take F(z)=l(z) m(z). Formula (2) and the definition of p(z)

show that l(z) is bounded in \z\ < 1, save near 1 where it is 0(1 — z)_1.

Therefore F(z) is bounded in \z\ <1 by (4); it is moreover clearly

continuous up to \z\ =1 save perhaps at 1 and —1.

For t<B<2t, we have from (3) and (5),

Í + K 1 + K
(6) F(e«) +- F(e-«) = - 2- l(e-»)u(6).

1 — K 1 — K

By choice of u, the right side of (6) vanishes identically for ir+a<8

<2ir. But it does not do so for ir<B<ir+a because u(8) does not

vanish identically there (otherwise it would be identically zero), and

l(e~'e) does not, l(z) being analytic and ^0 in \z\ <1.

We have constructed a function F with the required properties,

and the theorem is proved.
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