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ON CONTINUABILITY OF SOLUTIONS OF SECOND
ORDER DIFFERENTIAL EQUATIONS

T. BURTON AND R. GRIMMER

Abstract. An equation (1) x" +a(t)f(x) =0 together with some

generalizations are considered. We give necessary and sufficient

conditions in order that (1) have solutions which are not con-

tinuable in a certain fashion whenever a(t) becomes negative.

1. Introduction. We consider the equation

(1) x" + a(t)f(x) =0        (' = d/dt)

where a is continuous for 0 ^ t < °o, / is continuous for — oo <x < «>,

and x/(x) > 0 for x 9e 0.

In case a(t) is positive, then simple smoothness conditions on a(t)

are known which guarantee that all solutions of (1) can be continued

for all future time. It is also known (cf. [3] or [5]) that if a(t) is

positive and of bounded variation except at one point, then solutions

of (1) are not always defined in the future.

The case for a(t) negative at some point is quite different. In [7]

(cf. [6 ] ), it is shown that if a (t) is continuous and negative at one point

then

(2) x" + a(t)x2n+1 = 0

(for «^ 1) has solutions which are not defined in the future. Further-

more, this is completely independent of the smoothness of a(t).

The problem of continuability of solutions is of particular impor-

tance in the theory of oscillations. During the last several years a

number of investigators have attempted to prove that solutions of (1)

have arbitrarily large zeros even when a(t) is allowed to become

negative for some values of / (cf. [l], [4], [7], [8] and [9]).

In this note we give necessary and sufficient conditions for (1) to

have solutions tending monotonically to infinity in finite time when-

ever a(t) becomes negative at some point. We also show that this

result applies to a more general equation (see equation (3)) and that

(1) can be used as a comparison equation. Among other things, this

shows that attempts to prove that solutions of (1) have arbitrarily
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large zeros even when a(t) becomes negative should be preceded by

continuability results. Although Kiguradze [7] gave some conditions

which guaranteed that there exist nontrivial continuable solutions of

(2) when a(t) becomes negative, such conditions for (1) are unknown

to the authors.

2. Continuability. For convenience in notation, define

Fix) =   fXfis)ds.
J 0

Theorem 1. Suppose aih) < Ofor some h > 0. If either

(a) fi' [l + P(x)]-1'2¿x< » or

(b) /Ô" [l + P(x)h1'2áx>-oo,

then (1) has solutions x(¿) which are not continuable to + ».

Proof. Since aih) <0 and a is continuous, there are positive num-

bers S, m, and M such that -M£ait)£ -m<0iî h^t^h+S. In (1),

let x' = y to obtain the system

(l)' ¿ = y,      y - - aiOfix).

Assume that condition (a) holds. Denote by (x(¿), y it)) a solution of

(1)' satisfying x(ii) =0 with y(/i) large and to be determined. So long

as (x(/), yit)) is defined on [tx, h + 8) we have both x(i) and y(i)

monotonically increasing. From (1)' we obtain yy'= — a(i)/(x)x'

which, upon integration, yields y2it)—y2ih) = ~2f'hais)fixis))x'is)ds.

Since x(i) is increasing, there is a t satisfying t\ <t<t such that

/x(t)
fiu)du.

^<«1>

As x(£i) = 0, we have

y2it) - y\h) = - 2ait)Fixit))

so long as (x(¿),y(¿)) is defined and ¿i</</i + 5. Thus,

yit) = [y2(0 - 2a(i)F(x(/))]1'2

and so

[y2ih) + 2mF(x(/))]1'2 ^ yit) g [y2(/i) + 2MF(x(0)]1'2.

Since x' = y, we have

x'it) = [y\h) + 2mP(x(0)]1/2

or
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[y2(h) + 2mF(x)]-1>2dx ^ dt.

Integrating both sides from h to / and recalling that x(ii) =0 we have

[y2(ti) + 2mF(s)]~l'2ds ^ I - tv
o

Since (a) holds, we may choose y2(h) so large that the integral is

smaller than 8. It then follows that x(t)—»oo before t reaches h+d. In

order to show that the integral can be made smaller than 8 by taking

y(h) large, one can proceed as follows. Let «>0 be given. By (a),

there exists X>0 such that fx [l + F(s)]~ll2ds<e. Write mi

= [y2(h)/2m ] — 1 and agree that y (ti) will be taken so large that ux > 0.

Then

/» CO t\ oo

I     [y2(ti) + 2mF(s)]~li2ds = [2m]'1!2 |     [mi + 1 + F(s)]~ll2ds

= [M~m if   [mi + 1 + F(s)]-l'2ds + J" [mi + 1 + F(s)]-1l2ds\

< M"1'2{ f    [mi + 1 + F(s)]-1'2ds + X .

Since X is fixed, we may take y(ti) so large that the integral is smaller

than e. This yields the result when e is chosen so that 2e[2m]~ll2<8.

The proof is then complete in case (a) holds. If (b) holds, then a

similar argument may be given in Quadrant III of the xy-plane.

Remark. It is easy to see how condition (a) relates to equation (2)

for «^1 and a(¿i)<0. Equation (2) will have many noncontinuable

solutions as was shown by Kiguradze [7]. Theorem 1 is a direct

generalization of Kiguradze's result. Condition (a) is also related to

the hypothesis /" [du/f(u)]<<*> which was asked by Bobisud [l]

(see also [8]) who allowed a(t) to become negative but restricted his

discussion to continuable solutions. In view of our Theorem 1, it

would be interesting to know what conditions should be imposed on

(1) to assure the existence of some continuable solutions.

We note the manner in which solutions were shown to tend to

infinity in finite time and obtain the following result.

It is known that the only way in which a solution (x(t), y(t)) of (1)'

can fail to be defined past some T is if lim(-r~ [x2(t)+y2(t)] = + °°

(cf. [2, p. 6l]). It is easily shown that if a(t) is continuous and non-

negative for all t^O, then there is no ZTor any solution (x(t), y(t)) of

(1)' satisfying lim^r- x2(t) = + 00. Thus, the only way in which it is
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possible for solutions to behave as in the proof of Theorem 1 is for

a(h) < 0 for some h.

Theorem 2. Let ait) be continuous and satisfy ait) < 0 on an interval

ti^t<t2 with a(/2)^0. Then il)' has a solution (x(t), y it)) defined for

t = t\ and satisfying limier- |x(í)| = + °° for some T satisfying h<T

^ t2 if and only if either (a) or (b) holds.

Proof. By Theorem 1 and its proof we know that such solutions

exist if a (ii) < 0 and if (a) or (b) holds.

Assume that such solutions exist. To be definite, suppose that

there is a solution (x(¿), y it)) of (1) defined at t=t\ and satisfying

liniivr-x^) = + » for h <T^t2. Thus, (x(t), y(t)) is defined on the

interval [h, T). We shall show that (a) holds.

Since x' = y and since x(t) —>», there is some / satisfying h^t<T

for which x(/) > 0 and y(t) > 0 for t^t<T. As in the proof of Theorem

1, there are constants m and M such that — M^a(t)^—m for

t^t^ P where m ^0 since a(t2) ^Oand

[y2(t) + 2m{Fixit)) - F(x(t))}Y'2 ^ y(t)

Ú [y2(t) + 2M{F(x(t)) - F(x(t))} }'2

for t^t<T. Again, x' = y so

x'(t) = [y2(t) + 2M{F(x(t)) - F(*(i))}]1/2

or

[y2(t) + 2M{F(x(t)) - F(x(t))}]-i'2dx ^ dt.

An integration from t to t yields

/.
[y2(t) + 2M{F(s) - F(x(t))}]-1'2ds ^ t - t.

(I)

Now F(x) is an increasing function for x> 0 and we know that x(t) is

increasing. Thus, since y2(¿)>0, the integrand is defined. Since

x(t)—> oo as t—>T~, we see that

/» 00

I      [y2(t) + 2M{F(s) - F(x(t))}]-1i2ds < ».
J XÛ)

If we write w(t) = (y2(t)/2M) - F(x(t)), then

[w(t) + F(s)]-,'2ds < ».
/,
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If w(t)^l, then [w(t) + F(s)]-1l2^[l + F(s)]-il2 and so (a) holds.

Now suppose that w(t) > 1. Then

[w(t)]-v2 f     [1 + {l/w(T)]F(s)]-^2ds

/* OO

[1 + F(s)Yll2ds.

Since the first integral converges, so does the second and hence (a)

holds.
If x(t)—* — oo as t—*T~, then a similar proof may be carried out in

Quadrant III of the xy-plane showing that (b) holds, thus completing

the proof.

We now show that our results hold for the apparently more general

equation

(3) x" + q(t)x' + a(t)f(x) = 0

in which a and / are as before and q is continuous for 0 ^ t < oo.

If we let

r(t) = exp I    q(s)ds,

then (3) may be written as

(4) (r(t)x'Y + r(t)a(t)f(x) = 0.

Now let

=   I    \du/r(u)\    and    x(l) = y(s)
J n

so that (4) becomes

(5) y(s) + r2(t)a(t)f(y(s)) = 0

where ■ =d/ds.

Now a / interval [h, t2] on which a(t)<0 is transformed to an 5

interval [si, s2] where 5¿=/Ó* \du/r(u)\. Thus, if a(l) is negative on

[ii, h], then r2(t(s))a(t(s)) is negative on [si, s2]. Our arguments may

now be applied to equation (5).

Finally, we observe that (1) can be used as a comparison equation

for

(6) x" + a(t)g(x, x', 0=0
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in which g is continuous for — » <x< » , — » <x'< », and 0^t< »,

while a(t) is continuous on 0 ^ t < ».

Theorem 3. Let a(tî) <0for some h>0. Suppose there exists an in-

creasing function f which is continuous for — » <x < » and xf(x) >0if

x^O. In addition, suppose there exists 5j>0 and N>0 such that for

¿1=^=^1+21 either

(A) fix) ^g(x, y, t) forx>Nand y>N,or

(B) g(x, y, t) ¿/(x) forx<-Nandy<-N.

If (A) and (a) hold or if (B) and (b) hold, then (6) has solutions x(t)

satisfying \ x(t) | —> » as /—»Pf for some Ti>h.

Proof. Suppose that (A) and (a) hold. From the proof of Theorem

1, there exists a solution (x(t), y(t)) of (1)' satisfying x(¿i)=0, y(h)

>N, and x(t)—>+ » as t—>T~ for h<T<t¡.-\-8 where 8 is from the

proof of Theorem 1 and 8 may be chosen to satisfy 8 <5i. Now on the

interval [k, T), y(<) is also increasing. Thus, there is a number t¡

satisfying h<tz<T such that xih)>N. In the ¿x-plane, consider a

solution of (6), say x(¿) satisfying x(/3)>x(¿s) and x'ih)>yih). So

long as x(/) is defined on [h, T), we have x(<)>N and x'it)>N. We

now show that x(í) >x(¿) for all í^¿3 for which x(i) is defined. If this

is false, then there exists ¿4>/3 with x(¿4)=x(/4) and x(i)>x(/) on

[h, h). Nowx(0>A7andx'(0>A7on [h, h) and so

*"(<) - x"it) = - aiDgixit), x'it), t) + ait)fixit))

è - aiOfixit)) + aiOfixit)) > 0

since/ is increasing, a(i)<0, and x(¿)>x(í). Thus, x'it)—x'it) is in-

creasing on [h, ti) and hence, as x'(4)— x'(i3)>0 we have x'it)—x'it)

> 0 on [tí, ti)- But then x(i) —x(i) is increasing on [t3, tt) so x(í4) — x(¿4)

>x(/3)— x(¿3)>0. Since x(/)—>» as t—>T~, there is some Pi satisfying

h < Pi ^P with xit)—»» as f—»Pf. Thus, the proof is complete for the

case in which (A) and (a) hold. The proof in case (B) and (b) hold is

similar.

We leave the formulation of the comparison result corresponding

to Theorem 2 to the reader.
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