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Abstract.

(1) «G») =  f "k(ux)f(x) dx = ^-.{ K(s)F(l - s)u--ds,
J o 2irt J o

where g{u) and k(u) are known and f{x) is to be found. K(s) is

the Mellin transform of k (x) and F(s) of /(*) ; hence the second

equality. L and Z,-1 denote the Laplace transform and its inverse.

If

(2) k(s) = n r(atf + ft) / ft r(a,s + ft)

then I show that a suitable combination of L and Z,-1 operators,

applied to (1), can eliminate K(s) from the second integrand. This

leaves F(l— s) standing free and the Mellin transform then ob-

tains f(x) from F(l—s). This solution needs tables of Laplace

transforms only.

When (2) does not hold, an L and Z,-1 combination may turn (1)

into an integral equation whose solution is already known.

1. Introduction. L is the Laplace transform defined by

(1)
/■ oo

e-xt<t>(x) dx = $(t).
n

L"1 is the inverse of L. With cf>(x) and ip(t) as in (1) we then have

(2) £-M#(0} = *(*).

Our aim is to show that a large variety of integral equations can

be solved by means of the operators L and L~l.

Given ^(t), we can evaluate L~l{ip(t)] by several methods. One

is by complex integration [8, p. 66, Theorem 7.3]; another is by

using Post's operator [8, p. 277, (6) ] which uses real variable methods

only.

Here we assume that L~l{^/(t)] is found by reading a table of

Laplace transforms in reverse. We then have
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(3) Z->[L {*(*)}] = d>(x).

2. The annihilating power of L~l. Our basic result is as follows :

Theorem. If

(i) a>0, ¿a-|-|S>0, i>0;

(ii) s = a A-ip, a and pboth real; F(s)EL(\—i<*>, \-\- i<x>)

then

(4) Z,-1 {—; f T(as + ß)F(s)r°'-i>ds\  = — f Fis)ar**-lds,
\2iriJc )        2iriJc

where, for both integrals, the contour C may be the line a = \, a line

parallel to the imaginary axis in the complex s plane.

Proof. Let R denote the right-hand side of (4). When C is the

line <r=2 we see from a>0 and F(s)EL(% — i<x>, %-\-i<x>) that the

5-integral in R, with the factor x^_1 excluded, is absolutely con-

vergent for all values of x.

Let C be the line a = \ and consider

(5) L\r\ =   f   e~zt {- \  F(s)xa'+»~ids\ dx.
Jo \2iriJ c )

The modulus of the integrand is e~xi\ F(s)|xa/s+ff_1. Hence, from the

conditions, the right-hand side of (5) is an absolutely convergent

double integral. Consequently we may change the order of integra-

tion and integrate first with respect to x. This gives us

(6) L{R] = —: I   T(as + ß)F(s)r°«-i>ds.
2iriJ c

From equation (3), and the remark prior to it, an application of L~l

to both sides of (6) gives us

(7) R = ¿-1 |—; r r(as + ß)Fis)t-—tds\ ,

where Ccan be the line o = \. This completes the proof of (4).

3. Some corollaries of (4). s-integrals and integrands, as in (4),

will be called  Mellin type integrals and  Mellin type integrands.

(i) (4) shows that when L~l acts on a Mellin type integral it can

eliminate the factor Y(as-\-ß) from the numerator of the integrand.

(ii) In (4) write F(s) =H(s)/T(asA-ß) and cancel out the common

factor T(as-\-ß) in the left-hand side. We then see that when L~l
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acts on a Mellin type integral it can introduce a new factor r(as+|3)

in the denominator of the integrand.

(iii) R denotes the right-hand side of (4). Hence (6) shows that

when L acts on a Mellin type integral it can introduce a new factor

T(as+ß) into the numerator of the integrand.

(iv) Write F(s) = H(s)/T(as+ß) in (6) and cancel out the common

factor r(a5+j3) on the right-hand side. Then we can see that L acting

on a Mellin type integral can eliminate T(as+ß) from the denomi-

nator of the integrand.

In the special case when a = 1 and ß = 0, (iv) is given in [l, p. 132,

transform (29)].

The eliminating powers of L and L~l in (i) and (iv) enable us to

solve a wide variety of integral equations.

4. The Mellin transform. In some of our applications we shall need

the Mellin transform and some related theory. If

/» 00

f(x)x>-Hx
0

then we say that F(s) is the Mellin transform of/(x).

If (8) holds, then the inverse Mellin transform is given by

(9) /(*) = — f F(s)x-'ds,

where s is a complex variable and C is some suitable contour.

If F(s) and G(s) are, respectively, the Mellin transforms of f(x)

and g(x) then we also have

(10) f /(*)*(*) dx = — f F(s)G(l - s) ds,
J 0 2-ki J c

sometimes known as the Parseval theorem for Mellin transforms.

Conditions and proofs for (8), (9), and (10) can be found in  [4,

p. 46, §1.29, p. 60, §2.7 and p. 94, §3.17].

5. Solving integral equations by means of the L and L_1 operators.

Consider the integral equation

/2\i/2  r>«

(11) g(w) = I—)      I    sin(ux)f(x) dx,

where g(u) is known and f(x) is to be found.

For this example we must first express the integral in (11) in the

form of a Mellin type integral and this can be done by using the
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Parseval theorem (10). The application of (10) is justified by [4, p.

60, Theorem 43] with k = %, if f(x) and /(x)x~1/2 both belong to

i(0, °°) and F(s), the Mellin transform of f(x), belongs to

P(A—joo, 5-H00). The last condition will also allow us to use the

theorem in §2.

The Mellin transform of sin x is given by [4, p. 196, (7.9.3)] with

v = \, and for sin(wx) we must multiply by u~'. Hence, the application

of (10) to (11) gives us

(12) g(u) = -^ f 2->/2  *3* + \S) P(l - s)u-ds,
2-kiJ c        r(i — %s)

where, since we can take k = \ in Theorem 43, we may also take C to

be the line <r = \.

Consider now Z,{g(w1/2)}, which is a double integral in u and s.

If F(s) belongs to P(§— ¿°°, 5+¿°°) so does P(l — s). Hence, from

the asymptotic expansion of the Gamma function [7, p. 273] and

with the 5-integral taken along a = \, this double integral is absolutely

convergent. On integrating first with respect to u the factor T(l — %s)

is cancelled out and we obtain

(13) ¿U(«1/2)} = — f 23-1/2r(§ + is)F(l - s)t-i+"2ds.
2iriJ c

In order to use (4) we write t = 1/t in (13). We then have

r-^{[L{g(u^)]Uv,}

(14) 1    C
=-; 2«-1'2r(§ + ¿i)F(l  - i)f-«»-«'\fo.

2iri J c

The conditions of the theorem in §2 are satisfied, with a = ß = \.

Hence, from (4), we have

(15) L^[r-^{[L\giu^2)}]Mlr}] = -^ f 2-i'2F(l - s)x'i2-^ds,
lm J c

2i/s  r
(16) = —;     Fis)i2xl'2)-'ds,

2iriJ c

on replacing 5 by 1 —s in (15). If, in (15), Cis the line <r = \ then this

replacement leaves the contour of integration unaltered.

Finally, on applying (9) to the right-hand side of (16), our solution

of (11) becomes

(17) L->[T-'l*\[L{giu>'*)}]t-iir}] = 21'2/(2x1'2).
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To illustrate (17) let g(u) =0 when 0<u<a and g(u) = (u2 — a2)~112

when u>a. L{g(u112) ] =ir1/2r1'V-a,,I using [l, p. 137, (5)]. From

[1, p. 245, (40)] and (17) we then have

(18) 21'2f(2x1l2) = L-^ir^T-'e-"2"],

(19) = 7T1/2/o(2ax1/2).

The solution of (11) with the above choice of g(u) is then

(20) /(*) - (r/2yi2J0(ax).

This can be verified from the Fourier sine transforms given in

[l,p. 99, (1)].

The classical solution of (11) is

(21) f(x) = I — j      I    sin(xu)g(u) du.

For our choice of g(u) the solution of (11) can be obtained from (21)

only by evaluating a somewhat difficult integral.

If J,(x) is the Bessel function of order v and v > — 1 then the general

Hankel transform is

/» co
(xu)ll2J\(xu)f(x) dx.

0

This reduces to (11) when v = \. Considered as an integral equation

for/(x), the classical solution of (22) is obtained by interchanging

f(x) and g(u), in (22), and replacing the variable x of integration by

u. This solution bears the same relation to (22) as (21) does to (11).

The L and L-1 solution of (22), analogous to (17), is

(23)      2«VM'y(2«w«) = L-1[r-^[£{«'/^1/4g(«1'*)}]Wr}].

On applying the operator L to both sides of (23) we obtain a result

equivalent to one discovered by Tricomi [5, equations (9), (9') and

(15)], all of which are equivalent to each other.

6. Some formal L and L_I solutions of other types of integral

equations. Kv(x) denotes the associated Bessel function, see [6, p. 78,

(6)], and the Mellin transform of x'Kr(x) is 2'+'~2T(^s)T(is+v), [4,

p. 197, (7.9.12)]. Let

(utyKv(ut)f(u) du,
0

where g(t) is given and f(u) is to be found. Proceeding formally we
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apply the Parseval theorem (10) to the right-hand side of (24) and

obtain

(25) git) = — f 2«+-*r(|i)r(§i + *)F(1 - s)t-'ds,

where Fis) is the Mellin transform of fix). If we may use (4) then

L^lgit112)} eliminates TQs) from (25) and then, after writing

x = 1/i, L-ltr"-1 eliminates r(|s+v). The final result is

(26) L-i[t—i{[L-i\gitV2)}Ullt\] = 2—f— f Fií - s)i2x^2)-^ds,
¿in      J c

(27) = 2^Ix'-1'2/(2x1'2),

where, in (26), 5 is replaced by 1—s and then (9) is used to obtain

(27), as in going from (16) to (17). (27) is then our solution of (24).

If. e.g., git) = 1 /(i2+a2)  then,  from   [l,  p.  229,   (1)], we have

L-1{git1'2)}=expi-a2x) and from [l, p. 245, (40)],

(28) L-^t-'-'e-'2"} = a-'xr'Vtfax1!*).

From (27), for this choice of git), our solution of (24) is

(29) fix) = a~'x1-'J,iax).

This solution is easily checked from the K, tables [2, p. 137, (16)]

with v= —p, noting that the tables have («i)I/2 in the integrand of

(24) instead of (mí)' as we have.

7. Some general remarks. Suppose that we have the integral

equation

Ä(«x)/(x) dx,
o

where g{u) and kiux) are given and/(x) is to be found. On applying

the Parseval theorem for Mellin transforms (10) to the right-hand

side of (30) we find that instead of having one Gamma function in

the numerator and one in the denominator, as in (12), we have

n?=i r(a¿s-f-/3i) in the numerator and H™ x TiajS+ßs) in the

denominator. Then we can proceed as follows:

(i) by means of an m succession of L operators we can eliminate all

the Gamma functions from the denominator, as in the elimination

from (12) to (13) and
(ii) by means of an n succession of L~x operators we can eliminate all

the Gamma functions from the numerator, as in going from (25) to

(26).
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If convergence conditions allow all these operations to be per-

formed we shall then have F(\—s) standing free, as in (26). Since

F(s) is the Mellin transform of f(x) we can then express the final

integral obtained in terms of f(x), as in going from (26) to (27), and

so obtain the solution of (30). This method enables us to solve a large

variety of integral equations by using tables of Laplace transforms

only.

In the next section we give another useful method of solving

integral equations by using the L and L~l operators.

8. The reduction of an integral equation to one whose solution is

known. We illustrate the method by means of an example. Consider

the Stieltjes integral equation

/► 00

(u + I)-f(u) du,        a>0,
o

where g(t) is given and/(w) is to be found. By applying the operator

L to both sides and using (1), it is easy to establish that

L~l {(u+t)~a] =xa~le~ux/Y(a). Hence, if we may interchange the

order of applying L"1 to the right-hand side of (31) and infinite inte-

gration, we have

T(a) J o
(32) L->{g(t)] =-—       e-"xf(u)du

(31) is then reduced to an integral equation which can be solved by

standard methods, since (32) can be solved by an application of L-1.

We now apply L~l to (32), using (2), and obtain

(33) L-i{r(a)fi-«([L-i{g(t)] L.»,)} = f(x)

as our solution of (31).

In order to test (33) take a= 1 and

(34) g(t) = a-'iH'^KrWH1'2),       a > 0,

where Kv(x) is the associated Bessel function, as in §6 and, for con-

vergence — 1<j><3/2. Then the first Z,-1 of (33) is given by the

inverse Laplace tables [l, p. 283, (40)], and the second L~l from

[l, p. 245, (40)]. With g(t) as in (34) our solution of (31) is then

(35) /(*) = 2-la-'i2x*'2Jv(2a1i2x1i2)

where a>0 and — lO<3/2 and J,(x) is a Bessel function of order

v. This is easily checked from the Stieltjes transform tables [2, p.

225, (10)], with k = 0.
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Studies of (31), from a point of view quite different from that given

here, are found in Widder [8, Chapter VIIl], Erdélyi [3], and in

[2, p. 237, Í33)] a general solution of (31) is given with g(í) and/(ii)

both expressed as hypergeometric functions.

The reduction of (31) to an integral equation whose solution can

be obtained by known methods requires an application of L~l. A

general application of this method will usually require a combination

of L and L~l operators to make a successful reduction of this nature.

9. Some further general remarks. In §3 we have shown that L and

L~l, when acting upon Mellin type integrals, have the power to

annihilate or to introduce Gamma function factors into the inte-

grand. Here we have only used the annihilating powers of L and L~l.

But the power of introducing new Gamma function factors is also

useful and leads to many interesting results. For example this power

can be used to show that (17) and (21), the two solutions of (11),

although apparently quite different from each other are in fact

identical.
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