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SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually

elegant and polished character, for which there is no other outlet.

SUMS OF CUBES OF GAUSSIAN INTEGERS

J. H. E. COHN

Abstract. Every Gaussian integer is the sum of the cubes of

four Gaussian integers.

It is well known that every rational integer can be expressed as the

sum of the cubes of five rational integers, positive or negative. It has

long been conjectured that four such cubes would suffice, but despite

recent progress, the conjecture remains unproved. It is therefore of

interest that we prove :

Theorem. Every Gaussian integer can be expressed as the sum of the

cubes of four Gaussian integers.

Proof. It is clear that the Gaussian integer x can be so expressed if

and only if each of —x, ix and — ix can be. Accordingly, if x = 0

(mod 3) it suffices to consider the three cases x = 0, 3, 3+3i (mod 6),

and if x^O (mod 3) the four cases x = l, 2, 1+i, IA-2Í (mod 3+3i).

The result then follows from the following identities:

6z=(z+l)3+(z-l)3-2z3,

6z+3 = z3+(4-z)3-f-(2z-5)3+(4-2z)3,

62+3-r-3¿=(¿z)3+(¿2-l + í)3-(í3+í)'-(Í3-l)3,

3(l + i)z+l = -(z+l-i)3+{(2i-l)z-\-i-3}'

+ {(1-3¿)z+3-2¿}3-{(2+2í)z4-1+3í}3,

3(1-H)z4-2 = (z+1)3+(îz+1)3-(îz)3-z3,

3(l+0H-l+¿={(l + 2í)z+24+12¿}3+(2z+18-15t)a

-r-(z4-12-10¿)3+{(¿-l)z+18t-5}3,

3(l+i)z+l + 2i=(z-i)3+{(l+i)z+l}3-{(l + i)z}*-(z+i)*.
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