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MINIMAL HYPERSURFACES IN AN w-SPHERE

BANG-YEN CHEN

Abstract. (1) A submanifold Mn of a euclidean space En+i of

codimension 2 is a pseudo-umbilical submanifold with constant

mean curvature if and only if it is a minimal hypersurface of a

hypersphere of £n+2. (2) A complete oriented minimal surface Mï

of a 3-sphere S3 on which the Gauss curvature does not change its

sign is either an equatorial sphere or a Clifford flat torus.

1. Introduction. Let x'. Mn—>Pm be an isometric immersion of a

Riemannian manifold Mn of dimension n into an oriented Rieman-

nian manifold Rm of dimension m (m>n). For a unit normal vector

e at x(p), pEMn, there corresponds a selfadjoint transformation

A (e) of the tangent space TP(M") at p into itself, called the second

fundamental form at e. If e„+i, • • • , em is an orthonormal basis of

the normal space of M" in Rm at x(p), then the mean curvature vector

H is given by
m

(1) H=(l/n)   £  (trace ¿(er))er.
r=n+l

It is easy to verify that H is independent of the choice of the ortho-

normal basis e„+i, • • • , em. The length of the mean curvature vector

H is called the mean curvature. If the mean curvature vector H=0

identically, then the immersion x:M"—*Rm is called a minimal im-

mersion and Mn is called a minimal submanifold of Rm. If the mean

curvature vector H is nowhere zero and the second fundamental

form at the direction of the mean curvature vector is proportional to

the identity transformation of the tangent space of Mn everywhere,

then the immersion x:Mn-+Rm is called a pseudo-umbilical immersion

and Mn is called a pseudo-umbilical submanifold of Rm.

In this paper we prove the following theorems:

Theorem 1. Let x : M"—>En+2 be an isometric immersion of a Rie-

mannian manifold MH of dimension n into a euclidean space En+2 of

dimension n-\-2. Then Mn is a pseudo-umbilical submanifold of En+2

with constant mean curvature if and only if Mn is a minimal hyper-

surface of a hypersphere of En+2.
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Theorem 2. Let x:M2^>S3 be a minimal immersion of a complete

oriented surface M2 into a 3-sphere S3. If the Gauss curvature K of M2

does not change its sign, then M2 is immersed as an equatorial sphere or

a Clifford flat torus.

Remark 1. In the case of minimal surfaces in a 3-sphere S3 of

constant Gauss curvature, Lawson proved the following local

rigidity theorem [3]: If M2 is a minimal surface in S3 of constant

Gauss curvature, then either M2 is totally geodesic or M2 is an open

piece of the Clifford flat torus.

2. Preliminaries. Let x: M"—>En+2 be an isometric immersion of a

Riemannian manifold Mn of dimension n into a euclidean space

En+2 of dimension n + 2. Let F(Mn) and F(En+2) be the bundles of

orthonormal frames of M" and En+2 respectively. Let B be the set of

elements b = (p, ei, • • • , e», e„+i, e„+2) such that (p, ei, • • • , e„)

EF(Mn) and (x(p), ei, • • • , e„+2) G F(En+2) whose orientation is

coherent with that of En+2, identifying a with ¿x(e,), *=1, • • ■ , n.

Define x\B^F(E«+2) by x(b) = (x(p), eu ■ ■ ■ , en+2).

The structure equations of En+2 are given by

dx = ¿_, o}AeA,        deA = ¿_, wABeB,        (¿ab + uba = 0,
A B

(2) duA = ¿2 ub A o>ba,        dcoAB = ¿_, o>ac A <¿cb,
B C

A,B,C, - ■ ■ = 1,2, • ■ ■ ,n+2,

where <JA, w'ab are differential 1-forms on F(En+2). Let a a, <¿ab be the

induced 1-forms on B from w'A, u'ab by the mapping x. Then we have

cor = 0,        r, t, ■ ■ ■ = n + l,n + 2.

Hence, from (2), we get

¿1 o¡i A a* = 0,       i,j, k, ■ ■ • = 1, • • • , n.
i

From this and a lemma of Cartan, we can write

(3) 0>ir  =   ¿I ArijWj, Atij  =   Atji.
i

Moreover, from (2), we get

(4) dwi = ¿1 cûj A an,        duAB = 23 wac A wCb-
i C
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For each unit normal vector e at x(p), if we put e = (cos 9)e„+i

+ (sin 6)en+i, then the second fundamental form A(e) at e is the

linear transformation given by

M(e))(e<) = X) iicos6)An+lij + isinO)An+Uj)ej,

i = 1, 2, • • ■ , n.

3. Proof of Theorem 1. Suppose that the immersion x: Mn—>En+2

is a pseudo-umbilical immersion with constant mean curvature a.

Then, by the definition, the mean curvature vector H is nowhere

zero. Hence we can choose a unit normal vector ën+i in the direction

of H, that is H = aên+i- Therefore, we can suitably choose a local

cross section of if"—>P, say (p, ë\, ■ • • , ën, ên+i, ë„+2), such that the

corresponding 1-forms ¿>„ wAb of o)<, coab with respect to this local

cross section satisfy the following relations:

(6) ¿>,„+2 = fiôii,       i = 1, 2, • • • , n,      /i + /ï +•••+/» = 0.

Lemma 1. Let x : Mn—Œn+2 be a pseudo-umbilical immersion of Mn

into En+2. Then the mean curvature a is constant if and only if the form

cü„+i,K+2 vanishes identically.

Proof. Since the immersion x is a pseudo-umbilical immersion and

H = aën+i, we have

(7) w,n+i = aâi,        i = 1, 2, • • • , n.

Hence, if the form ¿»„+i,n+2 = 0 identically, then by using (4) and (6),

we have

(8) da f\ùi = ¿>¿,B+2 A ¿¡n+i.n+i = 0,        i = 1,2, ■ ■ ■ ,n,

which imply that the mean curvature a is constant.

Conversely, if the mean curvature a is constant, then, by (3) and

(8), we can easily prove that

(9) ¿>i,n+2 = 0,       i = 1, 2, • • • , n,

on the open subset U= {pEMn; ¿»«+1,^+2^0 at p\. By taking the

exterior differentiation of (9) and applying (4), we can easily prove

that

(10) ¿)i A ¿>n+l,n+S = 0, i = 1, 2, • • ■ , n,

on the open subset U. This implies that wn+i,n+2 = 0 on U. Therefore

we get U=0. This completes the proof of the lemma.

Lemma 2. If x:Mn-^En+2 is a pseudo-umbilical immersion and the
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mean curvature a is constant, then M" is immersed in a hypersphere of
En+2.

Proof. Consider the mapping y:Mn-*En+2 defined by y(p) =x(p)

+ (l/a)ë„+i, where H = ctën+i- Then, taking account of wn+i,n+2 = 0

which is a direct consequence of Lemma 1, we have dy(p) =0. This

means that Mn is immersed in a hypersphere of En+2.

Lemma 3. Let x:Mn—>En+2 be an isometric immersion of Mn into

En+2 such that M" is immersed as a minimal submanifold of a hyper-

sphere of En+2. Then Mn is a pseudo-umbilical submanifold of En+2 with

constant mean curvature.

Proof. Without loss of generality, we can assume that M" is

immersed as a minimal submanifold of the unit hypersphere of En+2

centered at the origin. In this case, the position vector field X is a

unit normal vector field of Mn in En+2. Since M" is a minimal hyper-

surface of the unit hypersphere of En+2 centered at the origin, we can

easily prove that the mean curvature vector H of Mn in En+2 is

parallel to the position vector field X. By choosing the cross section

(p, ëi, ■■ ■ , ên, ën+i, ën+2) of Mn—*B with ën+i = X, we have

(11)    An+uj = — Sa,   «n+i,« = — ¿2 An+ujWj,       i,j = 1, ■ • • , n,

and

(1 2) W»+l,n+2 = 0.

By (11), we know that the mean curvature is nowhere zero and Mn is

a pseudo-umbilical submanifold of En+2. Moreover, by (12) and

Lemma 2, we know that Mn has constant mean curvature. This

completes the proof of the lemma.

Now, we return to the proof of the theorem:

Suppose that Mn is a pseudo-umbilical submanifold of En+2 with

constant mean curvature. By Lemma 2, without loss of generality,

we can assume that Mn is immersed in the unit hypersphere centered

at the origin. By taking a local cross section (p, ei, • • • , e„+2) of

Mn—*B such that en+i = X, and ei, • • • , e„ diagonalize the second

fundamental form at en+2, we have

(13) A(e„+i) = identity    and    (/l(en+2))(e,) = A»e<,    i = I, ■ ■ ■ ,n,

where hi, i = l, ■ ■ • , n, are functions on Mn. By (13), we know that

the mean curvature vector H is given by

(14) H = en+i + (l/n)(hi + ■ ■ ■ + hn)en+2.
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By the assumption that the mean curvature a is constant, we have

(15) hi A- • ■ ■ + hn = constant.

Hence, by (5), (13) and (14), we get

,    %    (A(H/a))(ei) = (\/na)((hi + ■ • • + hn)hi + «)e¿)
(16) .      ,   ,

i = 1, 2, • • • ,n.

Therefore, by the assumption of pseudo-umbilical, we have

(17) ( E h\hi = I £ h\h* = • • • = I Z AyV

If Âi+ • • • A-hn^O, then, by (17), we get hi = h2= • • • =hn = con-

stant on M". This shows that the immersion x : Mn—Œn+2 is totally

umbilical, i.e. the second fundamental form has the same eigenvalues

for every normal direction. Thus, we know that Mn is immersed

into a hypersphere of a hyperplane of En+2 (see, for instance, [l]).

If Ai+ • • • +A„ = 0, then Mn is immersed as a minimal hypersurface

in the unit hypersphere of En+2. In both cases, Mn is immersed as a

minimal hypersurface of a hypersphere of En+2. The converse of this

has been proved in Lemma 3. This completes the proof of the the-

orem.

Remark 2. Lemma 1 and Lemma 2 have been proved in [2] for

n = 2.

4. Proof of Theorem 2. Suppose that x:M2—*S3 be a minimal

immersion of a complete oriented surface M2 into a 3-sphere. With-

out loss of generality, we can regard S3 as a hypersphere of Ei. By

Lemma 3, we know that the immersion x\M2—>S3EEi is a pseudo-

umbilical immersion in Ei with constant mean curvature. Hence, by

the assumption that the Gauss curvature K does not change its sign,

we know that M2 is immersed either as a sphere in a hyperplane of

E* or as a Clifford flat torus [2]. Hence, by the fact that x is a mini-

mal immersion of M2 into 5s, we know that M2 is either immersed as

an equatorial sphere or immersed as a Clifford flat torus. This com-

pletes the proof of the theorem.

Corollary. If M2 is an oriented closed surface of genus g^2 with

the Gauss curvature K¿0, then M2 cannot isometrically be immersed in

a 3-sphere as a minimal submanifold.

This corollary follows immediately from Theorem 2.

The author would like to express his thanks to Professors K. Yano,

G. D. Ludden and D. E. Blair for the valuable conversations.
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