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INDUCED MATROIDS

R. A. BRUALDI1

Abstract. There are several known results concerning how

matroids can be induced from given matroids by a bipartite graph

and the properties that are inherited in this way. The purpose of this

note is to extend some of these results to the situation where the

bipartite graph is replaced by an arbitrary directed graph. We

show how a directed graph and a matroid can be used to induce a

new matroid. If the initial matroid is strongly base orderable,

we prove that the induced matroid is also. In particular, a matroid

induced from a free matroid by a directed graph is strongly base

orderable. A consequence is that the cycle matroid of the complete

graph on four nodes cannot be induced from a free matroid by any

directed graph.

1. Let r be a directed graph in which each edge joins two distinct

nodes. A finite linear path 0 is a finite sequence (xi, X2, • • • , xn) of

distinct nodes where n^l and (x,-, xi+i) is an edge of T (l^i<n).

Notice that for each node x, (x) is a finite linear path which we refer

to as degenerate. The initial node of the path 0 is Xi, denoted by In 0,

while the terminal node of 0 is x„, denoted by Ter 0; the set of nodes

of 0 is Nod 0 = {xi, Xi, ■ ■ • , x„}. If © is a collection of paths in T,

then In © = {in 0:0G@}, Ter @={Ter 0:0G©}, and Nod © =

{Nod0:0£@}. We say © is a set of pairwise node disjoint paths if 0i,

02£©, 01^02 imply Nod 0ir\Nod02 = 0.

We formulate here the rule used in [3] for obtaining a theorem

about pairwise node disjoint paths in a directed graph from the

corresponding theorem for bipartite graphs. (Alternately, one can use

the second approach of [3] to obtain directly the same result.) This

rule can be formulated for infinite sets of paths as in [3], but we shall

restrict our attention to finite sets of paths, although the directed

graph T may be infinite. We shall then use this rule to prove some

theorems about matroids.

2. Let ©, $ be two finite sets of pairwise node disjoint finite linear

paths in the directed graph V. Let each node of Nod @P\Nod i> be

called an intersection node. The intersection nodes divide the paths of

Received by the editors October 19, 1970.

A MS 1970 subject classifications. Primary 05B35, 05C20; Secondary 05A05.

Key words and phrases. Matroid, directed graph, induced matroid, free matroid,

cycle matroid, bipartite graph, pairwise node disjoint paths, base orderable matroid,

strongly base orderable matroid.

1 Research supported by NSF grant GP-17815.

Copyright © 1971, American Mathematical Society

213



214 R. A. BRUALDI [July

0, resp. <ï>, into a collection 2©, resp. 2$, of subpaths as follows. Let

0 = (xi, Xi, • ■ ■ , x„)£0- If no node of 0 is an intersection node, then

0E20. Otherwise let xkl, xkv ■ • • , xk( (lgii<fe< • ■ • <k,^n) be

the nodes of d which are intersection nodes. We then put (xi, ■ ■ -,xkl),

(xkl, ■ ■ ■ , xki), ■ ■ ■ , (xk¡, ■ • • , xH) in 26. Notice that it may happen

that xkl = Xi so that (xi, ■ ■ ■ , xkl) is the degenerate path (x{) ; likewise

it may happen that (xk¡, • ■ ■ , xn) is the degenerate path (xn). The set

2<i> is constructed in an analogous way.

Let In 0WIn $Ç1 and Ter 0W Ter Î>Ç Y. There is then associated

a bipartite graph, denoted by G(0, <ï>) in the following way. Let Xi,

YT, X', X" be pairwise node disjoint sets such that there are bijec-

tions x—>Xi of X to Xi, y^>yr of Y to YT, and x—*x' and x—>x" of

Nod @n Nod 4> to X' and X", respectively. The sets XAJX' and

Yt^JX" (which are disjoint by our assumptions) comprise the nodes

of G(0, i>). We now construct the edges. Corresponding to each path

in 2(0) there is to be an edge of G(0, $). Let 6= (x=xit Xt, • • • ,xn

= y)E@- H 0£2(0) we associate the edge (xj, yT)- Otherwise if

(x, ■ ■ • , xkl), (xkl, ■ ■ ■ , xkl), • • ■ , (xk„ ■ ■ ■ , y) are the subpaths of

6 in 2(0) we associate the edges (xj, x'k[), (x'ti, x'£), • • • , (x'kt, yT)- The

collection of edges of G(0, «Í») constructed in this way is denoted by

2(0). In an analogous way the paths in 2(<ï>) give rise to a set 2(<É>) of

edges of G(0, <t>). These are to be the only edges of G(0, <f>). Observe

that 2(0), resp. 2(i>), is a set of pairwise node disjoint edges of

G(0,*).
The rule of [3 ] can now be formulated :

If X is a (finite) collection of pairwise node disjoint edges of G(0, <3?)

with

I'CInXCIjU X',        X" e Ter X e YT \J X",

then there is a (finite) collection II of pairwise node disjoint finite linear

paths in T with

Inn = {x'.xi E In A},        Tern = \y'.yT E Ter A/.

As formulated in [3] the presence of cyclic paths (paths whose

terminal node coincides with its initial node) is possible. The set II

above is what remains after the cyclic paths have been discarded.

3. Let X be an arbitrary set. A matroid [lO], [ll] on X is a non-

empty collection M of subsets of X such that (1) AEM, A'QA

imply ^'GAfand (2) Au A2EM, \Ai\ +1 = \A2\ < °° imply there is
an xG^Vii with Ai^J \x\ EM. Those subsets of X which are mem-

bers of M are called independent sets. A base of M is a maximal in-
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dependent subset of X. If | X | < °°, M is a finite matroid ; if one base of

M is finite, then all bases are finite and have the same cardinal num-

ber. Matroids with a finite base are called rank-finite matroids. If

SÇX, then Ms = {A^S'.AÇzM} is a matroid on S, called the restric-

tion of M to 5. If Mi and M2 are matroids on disjoint sets Xi and X¡,

respectively, then Mi®M2 is a matroid on X1UX2, called the direct

sum of Mi and M2. The matroid on a set X consisting of all subsets of

X is called the free matroid on X and is denoted by <P(X). For more

information on these matters, one may consult [lO], [ll],or [5].

There are a number of ways to induce matroids from given ma-

troids. Let G be a bipartite graph with node set XVJY (X(~\Y=0)

where each edge has initial node in X and terminal node in Y. Let

Ml be a matroid on Y and define a collection M2 of subsets of X by:

A £M2 if and only if there is a set II of pairwise node disjoint edges

with In H = A and Ter IIGM1. Then M2 is a matroid on X [7]. Those

matroids obtained in this way when M1 is the free matroid on Y are

called transversal matroids [4]. We use the rule formulated in §2 to

give relatively simple proofs of the following theorems. But first we

state and prove two lemmas.

If M is a matroid on a set X and A GjW, then the span of A is the

set A\j{zE.X\A:AKj{z\ $Af}. If Z is the span of A, then A is a base

of AT*.

Lemma 1. Let G be a bipartite graph with node setXKJY (XC\ Y= 0),

and let M1 be a matroid on Y. Let ©,- be a finite set of pairwise node dis-

joint edges of G with In ©, = ¿5, and Ter <èi = Ai(EM1 (i= 1, 2). Then

one of the following two possibilities must occur.

(1) There exists an x(EB2\Bi and a set II of pairwise node disjoint

edges with In U=B1Kj{x} and A^A^TerllEM1.

(2) There exists a set II of pairwise node disjoint edges with In II = By,

A1 C\ A2ÇTer IIG-M"1, and A2QZ where Z is the span of Ter II (rela-

tive to the matroid M1).

If Ai is contained in the span of Ai relative to M1, then we may

takeLT = @i to satisfy possibility (2). Thus assume thereisayG^X^i

with iiUJyJGM1, The node y determines a sequence of distinct

edges which alternate in @2 and ©1 and which either (i) ends with an

edge of ©2 with initial node XG-B2VB1 or (ii) ends with an edge of ©1

with terminal node zG^4i\^2- Let A¿ be the set of edges of ©i in this

sequence (i — 1, 2) and let ©3 = {©i\Ai} UA2. In case (i), ©3 is a set of

pairwise node disjoint edges of G with In <dz = Bx\j{x\ and AiC\A2

ÇTer @3=^4iW{y} GM1. We may then take n = @3 to satisfy possi-

bility (1). In case (ii), ©3 is a set of pairwise node disjoint edges with
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In <è3 = Bi, Air\A2QTer®3={Ai\{y}}\j{z}=A3EMl where \A,

r\A2\ >\AiC\A2\. We may then replace 0i by 03 and repeat the

above procedure. After a finite number of applications either we

achieve case (i) and thus satisfy possibility (1) or we obtain a set

0* (k^3) of pairwise node disjoint edges with In ®k = Bi, AiC\A2

ÇTer 0* = AkEM1 where AkQA2. If ^42 is contained in the span of Ak

relative to M1, we may take 11 = 0* to satisfy possibility (2). Other-

wise one more application of the above procedure must lead to the

occurrence of case (i) and thus to the satisfying of possibility (1).

Lemma 2. Let T be a directed graph, and let X, Y be subsets of the

nodes of T. Assume that M1 is a matroid on Y. Let 0,- be a finite set of

pairwise node disjoint, finite linear paths in T with In ®í = BíC1X and

Ter ®i = AiEM1 (i—í, 2). Then one of the following two possibilities

must occur.

(1) There exists an xEB2\Bi and a set II of pairwise node disjoint,

finite linear paths in Y with I n n = f^ U {x} arad Ter II £j M1.

(2) There exists a set II of pairwise node disjoint, finite linear paths in

r with In u = Bi, Ter IIEM1, and A2C.Z where Z is the span of Ter II

(relative to the matroid M1).

We deduce Lemma 2 from Lemma 1. Thus let G(0i, ©2) be the

bipartite graph associated with 0: and 02 as in §2. Because of the

bijection from Y to Yt we may consider M1 as a matroid on Yt- We

then consider the matroid Af1©(P(X") on YT\JX". Then 2(0¿) is a

collection of pairwise node disjoint edges in G(0i, ©2) with In 2(0¿)

= (Bi)lKJX' and Ter l(®i) = (Ai)T\JX"EMx®(P(X") (t-1, 2). We

now apply Lemma 1 to conclude one of the following two possibilities

must occur.

(3) There exists xiE(B2)i\(Bi)i and a set X of pairwise node dis-

joint edges of G(@u @2) with In X = (BO/VJ {*/} KJX' and X"Q Ter X
EM'®(?(X").

(4) There exists a set X of pairwise node disjoint edges of G(@i, ©2)

with In X = (Bi)iVJX', X"Q Ter XEM1 ®<?(X"), and (A2)TKJX"QZ
where Z is the span of Ter II (relative to the matroid M1®(P(X")).

By the rule of §2, (3) leads to an xEB2\Bx and a set II of pairwise

node disjoint, finite linear paths satisfying (1), while (4) leads to a set

u satisfying (2).

We use Lemma 2 now to prove Theorems 1 and 2.

Theorem 1. Let Y be a directed graph, and let X, Y be subsets of the

nodes of V. Let M1 be a matroid on Y and define a collection M2 of subsets

of X by: BEM2 if and only if there is a set 0 of pairwise node disjoint,
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finite linear paths with In ® = B, Ter ©GM1. Then M2 is a matroid

on X.

Property (1) for matroids being clear, we need to verify property

(2). Thus let BX,B2EM2 with |5i| =k, \B2\ = k + l, and let ©¿be a set

of pairwise node disjoint, finite linear paths in V with In @, = 5t,

Ter ®i — AiEMl (i—I, 2). We now apply Lemma 2 and observe that

possibility (2) can now not occur. For if it did we would have A2

contained in the span of Ter II (relative to the matroid M1) where

^42GMand \A2\ =k + \ but | Ter II| =k. This contradicts the defin-

ing properties of matroids. Hence possibility (1) of Lemma 2 must

occur, and we conclude that there is an xEB2\Bi with BiKJ {x} EM2.

Hence M2 is a matroid on X.

With reference to Theorem 1, the matroid M2 (on X) is said to be

induced from the matroid M1 (on Y) by the directed graph Y. If M1 is

the free matroid on Y, this result has been proved in [8] and [9]

(where a matroid is referred to as a pre-independence structure).

Theorem 2. Let T be a directed graph, and let X, Y be subsets of the

nodes ofT. Suppose the matroid M2 on X is induced from the rank-finite

matroid M1 on Y by T. If B is any base of M2 and 0 is any set of pair-

wise node disjoint, finite linear paths in Y with In © = 5, Ter ®=A

EM1, then M2 (on X) is induced from Ml (on Z) by T where Z is the

span of A relative to the matroid M1.

The corresponding result for bipartite graphs is derived in [2] when

M1 is the free matroid on Y (Z is then A) and is generalized in [ó]. If

M3 is the matroid induced on X from M\ on Z by T, then it is clear

that M3C1M2. Thus we need to show that M2CM3. This is a con-

sequence of the following argument.

Let B, be a base of M2 and let ©, be a set of pairwise node disjoint,

finite linear paths in T with In @¿ = B{, Ter @< = AfEM1 (i = 1, 2). We

now apply Lemma 2 and observe that possibility (1) can now not

occur. For, if it did, it would have as a consequence that there is an

xEBi\Bi with 5iU{x} EM2. This, however, contradicts the assump-

tion that B\ is a base of M2. Hence possibility (2) of Lemma 2 must

occur. Thus there is a set II of pairwise node disjoint, finite linear

paths in T with In Ti=Bi, TerLIGM1, and A2QZ where Z is the span

of Ter n (relative to M1). But A2, Ter IIGM1 with \A2\ =\B2\

= | Bi | =| Ter II |. But this means that Ter II is contained in the span

of Ai (relative to Ml). Thus we have a set II of pairwise node disjoint,

finite linear paths in T with In II = B\ and Ter II contained in the span
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of ^42 (relative to M2). Thus M2 (on X) is induced from M\% (on Z2)

where Z2 is the span of ^42 (relative to M2).

Let M be a matroid on a set X. Then M has been called base order-

able if given any two bases Bi, B2 there is a bijection <j:Bi-^>B2 with

{B\{x\\\j{a(x)\ and \B2\{o(x)\\\J\x\ bases for all xEBi. Of

course, the bijection a must be the identity on BiC\B2. If in addition

the bijection o* can be chosen so that {.BiV4 } VJ,a(A) and {B2\a(A)}

\JA are bases for all AQBi, then M will be called strongly base order-

able. (This definition may be unnecessary, for to our knowledge all

known base orderable matroids are strongly base orderable. In what

follows we require the seemingly stronger property.) It was proved in

[2] that all transversal matroids are base orderable and indeed

strongly base orderable. In [l] it was shown that not all matroids

are base orderable, so that this property gives a true necessary con-

dition for a matroid to be a transversal matroid. The result that trans-

versal matroids are strongly base orderable was generalized in [ó]

to include all matroids induced from strongly base orderable matroids

by a bipartite graph. Obviously a free matroid is strongly base order-

able, and it is readily verified that a restriction of a strongly base

orderable matroid is strongly base orderable. To show that a matroid

induced from a strongly base orderable matroid by a directed graph is

also strongly base orderable, we require the following lemma.

Lemma 3. Let G be a bipartite graph with node set XVJ Y (XC\ Y = 0),

and let the matroid M2 on X be induced by G from the strongly base order-

able, rank-finite matroid Ml on Y. If ©¿ is a set of pairwise node disjoint

edges of G with In @, = J3„ a base of M2, and Ter Si = AiEM1 (t = l, 2),

then there is a bijection p:Bi\B2—*B2\Bi such that for all A^Bi\B2

there exists a set 0,(^4) of pairwise node disjoint edges of G (t = l, 2)

with In@i(A)={Bi\A}VJp(A), AiÍ^A2C:Ter®i(A)EMí and
ln®2(A) = {B2\p(A)}UA, AinA2QTer Q2(A)EMK

Using Theorem 2 and the fact that the restriction of a strongly base

orderable matroid is strongly base orderable, we conclude that we may

assume that A{ is a base of M1 (i=i, 2). Let o:Ai\A2—>A2\Ai be a

bijection with {Ai\W}\Ja(W) and {A2\o(W) }KJW bases of M1 for

all WQAi\A2. We define a bijection p:Bi\B2^>B2\Bi as follows. Let

xEBi\B2. Then x determines a sequence of edges which alternate in

©i and ©2 and which ends either with an edge of @2 with initial vertex

yEB2\Bi or with an edge of ©1 with terminal vertex WiE^iV^. In

the former case we define p(x)=y. In the latter case we consider

o"(wi)E-^2V42 which determines a sequence of edges alternating in @2

and ©i that ends either with an edge of 02 with initial node yE-B2V42
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or with an edge of ©i with terminal node W2G^i\-^2 where Wi^w2. In

the first case we define p(x) =y; in the second case we repeat with

<t(w2) in place of o(wi). After a finite number of steps we arrive at a

finite sequence W\, w2, ■ ■ ■ , wk (k^ 1) of distinct nodes of Ai\A2 such

that the sequence of edges determined by a(wk) which alternates in

©2 and ©i ends with an edge of ©2 with initial node yEB2\B\. We then

define p(x)=y. Let A¿(x) be the set of edges of ©,- encountered in

defining p(x) (i = l, 2) and let W(x) = \w\,w2, ■ ■ ■ , Wk}. (Note that

W(x) may be empty.) Since p is a bijection, it is readily verified that

(^(x)KJ^(x):xEB\B2) and (W(x):xEBx\B2) are both families of

pairwise disjoint sets. In particular, p:Bi\B2—+B2\Bi is an injection

and thus a bijection. If A Ç:Bi\B2, then

®i(A) =  {©i\ U  Ají»! U { U A2(*)l ,
V x£A ) \ xGA )

%2(A) = (&\ U A2(x)l W \ U Ai(x)l

are each pairwise node disjoint sets of edges of G with

In8i(il) = {B1\A\ U p(A),

AinAtCTeiQ^A) = yh\ U W(x)\ VJa( U W(x) ) G M\
\ xGA ) \ x€A /

ln@,(A) = {B2\p(A)\ KJA,

A1r\AiQTeT@2(A) = |^l2v( U W(x)\\ W | U W(x)\ E AT.

This establishes the lemma.

Theorem 3. Let M1 be a strongly base orderable, rank-finite matroid

on a set Y. If the matroid M2 on X can be induced from M1 by a directed

graph T, then M2 is also strongly base orderable.

Let ©¿ be a set of pairwise node disjoint, finite linear paths in T

with In ®i = Bi, a base of Af2, and Ter €>i = AiEMi (i=i, 2). Let

G(©i, ©2) be the bipartite graph associated with ©1 and 02 as in §2,

and regard M1 as a matroid on YT. Consider then the matroid AT

®(P(X") on YTUX". Then 2(@¿) is a set of pairwise node disjoint

edges of G(@i, ©2) with In 2(0.) = (BJjVJX', Ter S(@¿) = (A>)TKJX"
(i = \, 2). Since from Theorem 2 we may assume that A\ and A2 are

bases of Af1, it follows by a simple cardinality argument that (-B,-)/

\JX' is a base of the matroid induced on XiVJX' from AT1® (P(X") by
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G(@i, @2). Using Lemma 3, we conclude that there is a bijection

pi:(Bi)I\(B2)I-^(B2)I\(Bi)i such that for all AlQ(Bi)I\(B2)I there

are sets ~Ki(A), \2(A) of pairwise node disjoint edges of G(@i, @2) with

X' Ç In Xi(A) = {(BJMi] VPI(AZ),

X" Ç Ter \i(A) EM1® 6>(X"),

X' Ç In \2(A) = {(B2)i\pi(Ar)} W Ai,

X" Q Ter X2(A) EM1® 6>(X").

Thus by the rule of §2 there is a bijection p:Bi\B2—>B2\Bi with the

property that for all AQBi\B2 there exist sets IIi(^4), n2(^4) of pair-

wise node disjoint finite linear paths in T with

Inni(^) = {Bi\A} W p(A),       Tern!E Af1,

In Il2(A) = ¡B2\p(A)\ KJ A,        Ter n2 E M\

Hence M2 is a strongly base orderable matroid on X.

Corollary. // a matroid M on X can be induced from a free matroid

by a directed graph, then Mis strongly base orderable.

This is a special case of the theorem, since a free matroid is trivially

strongly base orderable.

On six or fewer elements there are up to isomorphism only two

matroids which are not transversal matroids. These are the cycle

matroids [lO] of the complete graph A4 on four nodes, M(K¿), and

the cycle matroid of the graph obtained from a triangle by repeating

each edge. It is easy to verify that the latter matroid is strongly base

orderable and indeed can be induced from a free matroid by a directed

graph. The matroid M(Ki) is, however, not base orderable, as is easily

verified, and hence cannot be induced from a free matroid by any

directed graph. We may conclude that on six or fewer elements there

is up to isomorphism exactly one matroid, M(Kt), which cannot be

induced from a free matroid by a directed graph; similarly, there is

exactly one matroid on six or fewer elements, namely M(Ki), which

is not base orderable (or strongly base orderable).
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