ANNIHILATORS OF MODULES WITH A FINITE FREE RESOLUTION

WOLMER V. VASCONCELOS1

ABSTRACT. Let A be a commutative ring and let E be an A-module with a finite free resolution (see below for definition). Extending results known previously for noetherian rings, it is shown that $\operatorname{ann}(E) = \operatorname{annihilator}$ of E is trivial if and only if the Euler characteristic of $E = \chi(E) > 0$; in addition, if $\chi(E) = 0$, $\operatorname{ann}(E)$ is dense (i.e. $\operatorname{ann}(\operatorname{ann}(E)) = 0$). Also, a local ring is constructed with its maximal ideal with a finite free resolution but consisting exclusively of zero-divisors and thus, contrary to the noetherian case, one does not always have a nonzero divisor in $\operatorname{ann}(E)$ if $\chi(E) = 0$. Finally, if E has a finite resolution by (f.g.) projective modules it turns out that $\operatorname{ann}(\operatorname{ann}(E))$ is generated by an idempotent element.

1. For a commutative ring A, an A-module E has, we recall, a finite free resolution if there is an exact sequence

(*)
$$0 \to F_n \to \cdots \to F_1 \xrightarrow{\alpha} F_0 \to E \to 0$$

where each F_i is A-free with a basis of cardinality $rk(F_i) < \infty$. The integer $\chi(E) = \sum_{i=0}^{n} (-1)^{i} rk(F_i)$ is independent of the resolution (see [2], which we shall use as reference) and it is called the Euler characteristic of E.

It has been shown that the positivity of $\chi(E)$ is closely related to the faithfulness of E as an A-module. In fact, Auslander and Buchsbaum [1, Proposition 6.2] proved that if A is noetherian:

- (i) If $\chi(E) > 0$ then annihilator of $E = \operatorname{ann}(E) = (0)$.
- (ii) If $\chi(E) = 0$ then ann(E) contains a nonzero divisor.

Kaplansky in [2, p. 141] asks whether the chain conditions are needed at all. The purpose of this note is to show that the techniques there suffice to prove that in general we have:

THEOREM. (a) If
$$\chi(E) > 0$$
 then $\operatorname{ann}(E) = (0)$.
(b) If $\chi(E) = 0$ then $\operatorname{ann}(\operatorname{ann}(E)) = (0)$.

Received by the editors November 6, 1970.

AMS 1970 subject classifications. Primary 13C10; Secondary 13D05.

Key words and phrases. Annihilator, finite free resolution, Euler characteristic, Fitting invariant.

¹ Partially supported by a Rutgers University Faculty Fellowship and NSF Grant GP-19995.

An example of a local ring will show that (b) is best possible, i.e. that ann(E) does not contain always a nonzero divisor.

- 2. For the proof we recall some points from [2, p. 139]:
- (i) If S is a multiplicative set in A, then $\chi(E_S) = \chi(E)$.
- (ii) Let A be a local ring in which every finitely generated ideal has a nontrivial annihilator; then any A-module with a finite free resolution is actually free. In this case, for brevity, we shall say that A is a 0-ring.
- (a) Assume $\chi(E) > 0$ and $0 \neq a \in \operatorname{ann}(E)$. Let $J = \operatorname{ann}(a)$ and let P be a prime ideal minimal over J. Then, localizing at P we get that $J_P \neq A_P$ is the annihilator of aA_P and so $a_P \neq 0$. Also, PA_P is minimal over J_P and thus every finitely generated ideal I of A_P has a power $I^n \subset J_P$ and so $I^n a_P = (0)$; it follows easily that A_P is a 0-ring. Thus E_P is free of rank $\chi(E) > 0$ and so $\operatorname{ann}(E_P) = (0) = (\operatorname{ann}(E))_P \supset aA_P$, a contradiction. Hence $\operatorname{ann}(E) = (0)$.
- (b) Let F(E) be the 0th Fitting invariant of E, i.e. if α in (*) is an $r \times m$ matrix, F(E) is the ideal of A generated by the $m \times m$ minors of α . We know that $(\operatorname{ann}(E))^m \subset F(E) \subset \operatorname{ann}(E)$. In particular we have $\operatorname{ann}(\operatorname{ann}(E)) = (0)$ iff $\operatorname{ann}(F(E)) = (0)$. Ann (F(E)) is easier to work with since F(E) is finitely generated and so its annihilator "localizes."

Assume then $0 \neq a \in \operatorname{ann}(F(E))$ and write $J = \operatorname{ann}(a)$. Let P be a prime ideal minimal over J. $J_P \neq A_P$ implies $a_P \neq 0$ and A_P is a 0-ring. As $\chi(E_P) = \chi(E) = (0)$, $E_P = (0)$ and $F(E)_P = F(E_P) = A_P$, a contradiction again. This concludes the proof.

3. An ideal I with the property of $\operatorname{ann}(E)$ of (b) above, that is $\operatorname{ann}(I) = (0)$, is called dense. As it is well known, whether in general it contains a nonzero divisor depends on what the maximal rational extension of A looks like. We consider here an example of an ideal in a local ring, with projective dimension one, but in which every element is a zero divisor.

Let R = k[[x, y]] = power series ring in x, y over the field k. Let M be the R-module $= \bigoplus \sum k(P)$, where k(P) = field of quotients of R/P, P = prime ideal of height 1. Let $A = R \oplus M$, where addition is componentwise and multiplication given by the rule

$$(r, m) \cdot (s, n) = (rs, rn + sm).$$

Notice that M is an ideal of A, $M^2 = (0)$ and that A is a local ring with maximal ideal P generated by x, y. Observe also that every element of P is a zero divisor. We claim that proj dim P = 1. For this end, consider $A^2 \rightarrow P \rightarrow 0$ with $(1, 0) \rightarrow x$ and $(0, 1) \rightarrow y$. Let us determine the module of relations L of P. Let $(a, b) \in L$; write $a = a_0 + a_0$

 $\sum a_P$ (and similarly for b) where a_0 denotes the R-component of a and a_P its k(P)-component. Then

$$a_0x + b_0y = 0$$
 and $a_Px + b_Py = 0$ $\forall P$.

Since x, y is a regular sequence in R, the first relation says that (a_0, b_0) is a unique R-multiple of (y, -x). As for the other relations, since x, y cannot be both zero in k(P) and this last is a field, (a_P, b_P) must be a unique k(P)-multiple of (y, -x). Thus L = A(y, -x) and proj dim P = 1.

4. COROLLARY. Let A be a commutative ring and let

$$0 \to E_n \to \cdots \to E_1 \to E_0 \to E \to 0$$

be a projective resolution of E where the E_i 's are finitely generated. Then ann(ann(E)) is generated by an idempotent element.

PROOF. For each prime ideal P, let $r(P) = \chi(E_P)$; since, for each i, $rk((E_i)_P)$ defines a continuous function from Spec $A \rightarrow \{Z + \text{discrete topology}\}$, r(P) is also a continuous function. Let F(E) be the 0th Fitting invariant of E and write J = ann(F(E)); then, for each prime P, $J_P = \text{ann}(F(E_P))$ and is, by the Theorem, either A_P or (0)—depending on whether r(P) > 0—or = 0. This says that A/J is a flat A-module (cyclic) with support an open set of Spec A. According to [3, p. 506] A/J is A-projective and so J is generated by an idempotent. It is clear that J = ann(ann(E)).

REFERENCES

- 1. M. Auslander and D. A. Buchsbaum, *Codimension and multiplicity*, Ann. of Math. (2) 68 (1958), 625-657. MR 20 #6414.
- 2. I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR 40 #7234.
- 3. W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138 (1969), 505-512. MR 39 #199.

RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903