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ANNIHILATORS OF MODULES WITH A
FINITE FREE RESOLUTION

WOLMER V. VASCONCELOS!

ABSTRACT. Let 4 be a commutative ring and let E be an 4-
module with a finite free resolution (see below for definition). Ex-
tending results known previously for noetherian rings, it is shown
that ann(E) =annihilator of E is trivial if and only if the Euler
characteristic of E=x(E)>0; in addition, if x(E)=0, ann(E) is
dense (i.e. ann(ann(E)) =0). Also, a local ring is constructed with
its maximal ideal with a finite free resolution but consisting ex-
clusively of zero-divisors and thus, contrary to the noetherian
case, one does not always have a nonzero divisor in ann(E) if
x(E) =0. Finally, if E has a finite resolution by (f.g.) projective
modules it turns out that ann(ann(E)) is generated by an idem-
potent element.

1. For a commutative ring 4, an A-module E has, we recall, a
finite free resolution if there is an exact sequence

*) 0o Fp— - = Fy 5 Fo— E—0

where each F;is A-free with a basis of cardinality rk(F;) < . The
integer x(E)= X.*.o (—1)k(F,) is independent of the resolution
(see [2], which we shall use as reference) and it is called the Euler
characteristic of E.

It has been shown that the positivity of x(E) is closely related to
the faithfulness of E as an 4-module. In fact, Auslander and Buchs-
baum [1, Proposition 6.2] proved that if 4 is noetherian:

(i) If x(E) >0 then annihilator of E=ann(E) = (0).

(ii) If x(E) =0 then ann(E) contains a nonzero divisor.

Kaplansky in [2, p. 141] asks whether the chain conditions are
needed at all. The purpose of this note is to show that the techniques
there suffice to prove that in general we have:

THEOREM. (a) If X(E) >0 then ann(E) = (0).
(b) If x(E) =0 then ann(ann(E)) = (0).
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An example of a local ring will show that (b) is best possible, i.e.
that ann(E) does not contain always a nonzero divisor.

2. For the proof we recall some points from [2, p. 139]:

(1) If S is a multiplicative set in A4, then x(Es) =x(E).

(ii) Let 4 be a local ring in which every finitely generated ideal has
a nontrivial annihilator; then any 4-module with a finite free resolu-
tion is actually free. In this case, for brevity, we shall say that 4
is a O-ring.

(a) Assume x(E)>0 and 0#ae&ann(E). Let J=ann(a) and let
P be a prime ideal minimal over J. Then, localizing at P we get that
Jp#Ap is the annihilator of a4 p and so ap#0. Also, P4 p is minimal
over Jp and thus every finitely generated ideal I of Ap has a power
I"CJp and so I*ap=(0); it follows easily that Ap is a 0-ring. Thus
Ep is free of rank x(E) >0 and so ann(Ep) = (0) = (ann(E))pDadp,
a contradiction. Hence ann(E) = (0).

(b) Let F(E) be the 0th Fitting invariant of E, i.e. if o in (*) is an
r Xm matrix, F(E) is the ideal of 4 generated by the m X minors of
a. We know that (ann(E))"C F(E)Cann(E). In particular we have
ann(ann(E)) = (0) iff ann(F(E)) =(0). Ann(F(E)) is easier to work
with since F(E) is finitely generated and so its annihilator “localizes.”

Assume then 0##aE€ann(F(E)) and write J=ann(a). Let P be
a prime ideal minimal over J. Jp#Ap implies ap#0 and Ap is a
0-ring. As x(Ep)=x(E)=(0), Ep=(0) and F(E)p=F(Ep)=Ap, a
contradiction again. This concludes the proof.

3. An ideal I with the property of ann(E) of (b) above, that is
ann(I) = (0), is called dense. As it is well known, whether in general
it contains a nonzero divisor depends on what the maximal rational
extension of A looks like. We consider here an example of an ideal
in a local ring, with projective dimension one, but in which every
element is a zero divisor.

Let R=F[[x, y]] =power series ring in x, ¥ over the field k. Let M
be the R-module = @ Y k(P), where k(P)=field of quotients of
R/P, P=prime ideal of height 1. Let 4 = R® M, where addition is
componentwise and multiplication given by the rule

(r, m)-(s, n) = (rs, rn + sm).

Notice that M is an ideal of 4, M?=(0) and that 4 is a local ring
with maximal ideal P generated by x, y. Observe also that every
element of P is a zero divisor. We claim that proj dim P =1. For this
end, consider 42—P—0 with (1, 0)—x and (0, 1)—>y. Let us deter-
mine the module of relations L of P. Let (a, b))EL; write a=a,+
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Y ar (and similarly for b) where ao denotes the R-component of @
and ap its k(P)-component. Then

aox + by =0 and apxr 4 bpy =0 VP,

Since x, y is a regular sequence in R, the first relation says that (a,, bo)
is a unique R-multiple of (y, —x). As for the other relations, since
x, ¥ cannot be both zero in k(P) and this last is a field, (ap, bp) must
be a unique k(P)-multiple of (y, —x). Thus L=A(y, —x) and
proj dim P=1.

4. COROLLARY. Let A be a commutative ring and let
0O—>E,—: - >E —>E—-E—0

be a projective resolution of E where the E,'s are finitely generated. Then
ann(ann(E)) is generated by an idempotent element.

ProoF. For each prime ideal P, let »(P)=x(Ep); since, for each
i, rk((E:)p) defines a continuous function from Spec 4— {Z+dis-
crete topology} , r(P) is also a continuous function. Let F(E) be the
Oth Fitting invariant of E and write J=ann(F(E)); then, for each
prime P, Jp=ann(F(Ep)) and is, by the Theorem, either 45 or (0)
—depending on whether 7(P)>0—or=0. This says that 4/J is a
flat A-module (cyclic) with support an open set of Spec 4. According
to [3, p. 506] 4/7J is A-projective and so J is generated by an idem-
potent. It is clear that J=ann(ann(E)).

REFERENCES
1. M. Auslander and D. A. Buchsbaum, Codimension and multiplicity, Ann. of
Math. (2) 68 (1958), 625-657. MR 20 #6414.

2. I. Kaplansky, Commutative rings, Allyn and Bacon, Boston, Mass., 1970. MR
40 #7234

3. W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc.
138 (1969), 505-512. MR 39 #199.

RutGErs UNIVERsITY, NEW BRUNsWICK, NEW JERSEY 08903



