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A CHARACTERIZATION OF REGULARITY IN TOPOLOGY

OSWALD WYLER1

Abstract. We show in this paper that a topological space satis-

fies Tt (which we do not intend to imply T¡) if and only if conver-

gence of filters is a continuous relation. In particular, a Hausdorff

space is regular if and only if convergence of filters is a continuous

mapping. We propose a new, categorically motivated, definition of

continuous relations between topological spaces, and we compare it

with two existing continuity concepts for relations.

Let (E, t) be a topological space. We denote by E* the set of all

filters on E which converge for r to some point of E. For XEE, we put

X*= {(pEE*:XE<p}. Then 0* = 0 for the empty set, and

(X f\Y)* = X*f\Y*,       xEX*<^>xE X,

for subsets X, F of E, xEE, and x — {XEE:xEX). We regard con-

vergence of filters for rasa relation q:E*—*E, writing (pqx if <p

converges to x. This relation is a mapping if and only if (E, t) is a

Hausdorff space. For XEE, we haveq(X*) = X, the closure of X for r.

It seems natural to impose a topology on E* by using the sets U*,

with U open for r, as a basis of open sets. The preceding paragraph

shows that this works, and we denote the topology of E* thus defined

by r*. With this notation, we state the following theorem.

Theorem 1. A Hausdorff space (E, r) is regular if and only if con-

vergence of filters on Efor r defines a continuous map q:(E*,r *)—>(£, t).

Instead of proving Theorem 1 directly, we generalize it. Theorem 1

is an immediate corollary of Theorem 3 below. We need some defini-

tions.

Let r'.E^>F be a relation between two sets. For XEE and

YQF, we put y Er(X) if y E F and x r y for somexEX, and xEr~l(Y)

if xEE and x r y for some y £ Y. One sees easily that

r(X) nF = J¿f«inr'(F) = 0.

If E and F are topological spaces, then r is called upper semicontinuous
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if r~x(Y) is closed in E for every closed YEF, and r is called lower

semicontinuous if r_1( Y) is open in E for every open FC F. These con-

cepts have been used by various authors; see e.g. [l, Chapter VI ] or

[3].
A relation r :E—*F between topological spaces has been called con-

tinuous if r is both upper and lower semicontinuous. We propose a

different definition. We call r:E-^F continuous if, for a topological

space A and mappings/:^—>E and g'.A—»Fsuch that/(w) r g(u) for

all uEA, continuity of/ always implies continuity of g.

This can be simplified. Let RQEXFbe the graph of r and/r.P—*E

and gi'.R—*F the projections, i.e. /i(x, y)=x and gi(x, y) =y if x r y.

Provide R with the coarsest topology for which/i is continuous. If r is

continuous, then g\ is continuous for this topology of R. In fact, this

is not only necessary but also sufficient for continuity of r. For if

f:A—>E and g:^4 —»F are mappings such that/(w) r g(u) for every

uEA, then/=/iA and g = g\h for a unique mapping h:A^>R, and A is

continuous, for the given coarse topology of R, if/is continuous. Thus

continuity of/ implies continuity of g if g\ is continuous.

We shall study continuous relations elsewhere in greater detail and

in a more general setting. We mention here only that all three con-

tinuity concepts defined above coincide with the usual continuity if r

is a mapping, and we connect continuity with upper and lower semi-

continuity by the following result.

Theorem 2. A continuous relation r:E—>F between topological spaces

is upper semicontinuous if and only if its domain r~l(F) is closed in E,

and r is lower semicontinuous if and only if r~l(F) is open in E.

Proof. If r is upper semicontinuous, then r~l(F) is closed in £•

Conversely, let i?CPXFbe the graph of r &ndfi\R—»£ and gi'.R—*F

the projections, as above. Provide R with the coarsest topology for

which/i is continuous, with the sets frx(X), X closed in E, as closed

sets. If r is continuous and Y closed in F, then grl(Y) is closed in R,

and thus grx(Y) =fr1(X) for a closed set XEE. One sees easily that

r-l(Y)=XC\r-l(F) in this situation. Thus r~x(Y) is closed if r~l(F) is

closed. The same argument, with closed sets replaced by open sets,

shows that r is lower semicontinuous if and only if r~l(F) is open.D

The following example shows that Theorem 2 has no obvious con-

verse. For every topological space E, the full relation r:E—>E with

graph EXE is both upper and lower semicontinuous. On the other

hand, we have f(u) r g(u) for all uEA if f'.A—Œ and g:A-^E are
arbitrary mappings. Thus r is continuous only if E is an indiscrete

space.
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We need one of the separation axioms introduced by Davis [2].

Davis calls a topological space (E, r), with filter convergence q, an Ra

space if always x q y=>y q x for x, y in E. It is shown in [2 ] that T\ is

equivalent to the conjunction of T0 and 7?0, and that T% (called 7?2 in

[2 ]) always implies 7?0.

Theorem 3.  The following three statements are logically equivalent

for a topological space (E, t) with filter convergence q.

(i) (E, t) is a Ti space.

(ii) q:(E*,T*)-+(E, t) is continuous.

(iii)  (E, t) is an Ro space and q is upper semicontinuous.

Proof. Assume first T3 and considerf:A-^E* and g'.A—>E with/

continuous and/(w) converging to g(u) for all uEA. If t/is open in E

and g(u) E U, then g(u) £ V and VE U for some open V. For this V,

we have F £/(«),and VEf(v) implies g(c)EV. Thus uEf"1( V*) and
f~l(V*)Eg~l(U). This shows that g_1(^) is open, and hence g con-

tinuous.

If q is continuous, then q is upper semicontinuous by Theorem 2. If

x qy, let A be the space with two points u, v, and with {v} open, but

not closed. Put f(u) =f(v) = x and g(u)=x, g(v)=y. Then/ is con-

tinuous, and/(z) q g(z) for zEA. Thus g is continuous. If V is open

and xEV, then g_1(V) is open and uEg~l(V). Thus g~1(V)=A, and

yEV. This shows that also y q x, and 7Ï is 7?0.

Assume now (iii), and let F be closed in E and xEE\F. H x qy,

then yjjc, and y£F would imply xEF—F. Thus x£g_1(^)- It

follows that xE V* for an open set F with V*r\q~l(F) = 0. But then

* £ V, and FP\ F = 2(F*)nF=0. Thus E satisfies TV D
The following example shows that 7?0 cannot be omitted from

Theorem 3. The space with two points and three open sets (used in the

proof of the theorem) is T0 but not Ti, and hence a fortiori not Tz or

7?o. But one sees easily that q is upper semicontinuous for this space.

Remark. All results of this note remain valid if E* is replaced by a

set of convergent filters which contains all convergent ultrafilters.
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