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POLYNOMIAL EXTREMAL PROBLEMS IN LPl

E. BELLER2

Abstract. For p>2, letmp,„ be the minimum of the L" norm

all nth degree polynomials ¿~^" ateikt which satisfy |a*| =1, fe = 0,

1, • • • , n. We exhibit certain polynomials Pn whose 2> norm

(2 </»<») is asymptotic to i/n, thereby proving that mp,n is

itself asymptotic to y/n. We also show that the sup norm of

(essentially) the same polynomials is asymptotic to (1.1716 . . . )

XV«.

1. Introduction. Behind a number of polynomial extremal problems

lies the following crude question: How close can we get to a situation

where P(z) is a polynomial of degree «>0, which, on the one hand,

has coefficients of constant modulus, and on the other hand, | P(z) \

is constant for \z\ =1?

Actually, for each p>0, one can formulate a precise LP interpreta-

tion of the above question. Let 0\ be the class of all nth degree

polynomials ]Ct-oa*z* such that |a*| =1, k = 0, 1, • • • , n. For

0<p< », let

Mp(f) = ((2Tr)-^r\f(e»)\pdeSJ
Up

so that for /£(?„,  M2(f) = (£ï_o \ak\ 2)1,2 = (w+1)1'2.  Let  M„(f)

= s\iT){B\\f(e'*)\.  From  Holder's inequality we can  conclude   that

(1) Mp(f) é Mq(f)        (0 < p = q Ik oo).

For p> 2, the problem is to minimize Mp(f). Let

mp,n = min Mp(f)        (f E ô°„).
1/1

By (1) we have Mp(f) = M2(/) = (n+l)m, so that mp,n^ («+1)1'*.
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Now, in order that MPif) be [close to] (« + 1)1/2, the inequality

Mp(f)^M2(J)—and therefore the underlying Holder inequality—

must be [close to] equality, i.e., |/(e,9)| must be close to constant.

The main result of this paper is that, for 2<p< w, mp,„ is asymp-

totic to s/n as n—» «>, so that, in this sense, our original question is

answered. The problem of the minimum of the sup norm, i.e.,

m»,n, is more elusive. It has been known for more than 50 years that

rrioo.n satisfies mx,n^c\/n, c an absolute constant (see Zygmund

[7, Theorem 4.7, p. 199] and J. E. Littlewood [5, p. 27]). Littlewood

[3], [4] showed thatm„,„^ (1.35)y/n. But P. Erdös [2] conjectured

thatm„,n is not asymptotic to \/n, and that, in fact, there exists an

absolute constant ^4>0 such that mao,n^(l+A)\/n. In this paper

we will show that m«,„< (1.1717) \/« by using polynomials similar to

those used in the main result.

Before proceeding with p > 2, let us see what happens when

0 < p < 2. The inequality becomes reversed: MP(J) ^ M2(J)

= (n+l)112, and the corresponding quantity to be considered is Afp,„

= max{f)MPif) (JE<Pn). D. J. Newman [6] constructed polynomials

Pn and proved the following lemma: M\iPn) = ra2+0(w3/2). He then

used the lemma to prove that Mi,n/y/n—*l, and, in fact, Mi¡n~^y/n

— c. By (1), the same follows immediately for Mp,n, 1 ^p<2. The re-

sult can be further extended to cover all p, 0 <p < 2, as follows.

From the Schwarz inequality we conclude that

/l/M(/!/l~)'"(/[/l')

which, applied to our present case, yields

iM2iPn)yip in + l)2ip
MPiPn) ^

(M4_p(Pn))(4-p)/p ~ (M4(Pn))(4-p)/p

so that, applying the lemma, we obtain

in + l)2lp «1/2

MP(Pn) ^ ,._„,_ >
(»2 + An3l2)^p),ip      (1 + ^«-Wi)(4-p)/43»

> »««(1 - (A/pYi-1'2) > Vn - A/p.

We thus record the more complete result corresponding to the

theorem in [6]:

Mp,n^y/n—c/p (0<p < 2), where eis an absolute constant.

Yet another formulation of our original problem is as follows: Let

?„ be the class of all wth degree polynomials satisfying | 22 a*z* | = 1

for  |z|=l. We now  consider  9D?B = max(/} 22 Ia*I   (fE$n)-   Using
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the Schwarz inequality for sums, we have

El«*l á ((» + i)E|a*|ä)i's
= (n+ iyi2M2( £ akz") ú(n+ l)1'2

so that <SSlnú(n+l)112. If we are to have near equality in both of the

above estimates, then both \ak\ and | 22 0*2*| must be nearly con-

stant. Beller and Newman [l] have indeed shown that <$fl„/\/n—>l.

2. Main result.

Theorem. mp,n~\/n, 2<p< 00. In fact, for sufficiently large n,

(n + l)1i2SmP,núVn + 2*p(log n)p~2.

Remark. In all that follows, the phrase "for sufficiently large n"

is to be understood. Its precise meaning is: for all n^K, where K is

some absolute constant (not depending on por N).

Proof. We use the same polynomials that Newman [6] con-

structed, namely
n

Fn(z) = E exp(k2iri/(n + l))zK
k=0

We will prove the following.

Proposition 1. For N=l, 2, • • ■ ,

MÍ(P„) ú nN~l + (32)2""1 nl2N~'~im (lognf'^ .

The theorem follows directly from Proposition 1. Indeed for

2Ar~1gp<2Ar, we have

Mp(Pn) á M^(Pn) Ú Vn + 2-Ar(32)2W-1(log«)(2JV_1-2>

< Vn + 26*>(log w)p-2.

Before proving Proposition 1, we introduce the following notation.

Given n, let {aN(k)} be defined by

n2N-l

(2) | Pn(e") |** =      Z     <*(*)«*«,        N - 1, 2, • ■ • .
k—n2if-1

For iV^ 2, the following relations are immediately evident:

»2^-2 _

as(0) =       £    | ajv-i(£) |2; aN(j) = aN(—j),
k—nï»-*

ax(j) =       H      aN-i(k)aN-.i(k — j)        (j > 0).
k-j-n2N-%
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We now define

bi(k) = V«        (Oúk^ Vn),
(4)

= n/k        (Vn < k g n/2)

(5) h(n - k) = bi(k)    (k^O);       bx(k) = bii-k).

For N=2, 3, ■ ■ ■ , bNik) is defined recursively:

(6) bt,(k) = (« log »)^-l^_,(jfe)        ( | 4 |   g w2^-2) ;

M»2*-1 - 4) = i*(4) (A è 0),

M4) = M-¿);   iw(*) = 0       (| *|  > w2i'-1).

For 0 úk^n, it follows from (6) that bNik) = (» log m)*2"-1-»^), so

that

fo,(¿) = «(^-'-^»(log«)^-1-!)        (0 £ 4 £ V«),
(8)

= (»^/¿Xlogw)'2"-'-» (V« < /eá n/2).

Furthermore, it follows from (7) that

(9)    bNin2m-k) = bNik)        (0g*á»2"-1;«í=0,1,2, • • • ,N-l).

We now state the following

Lemma 1. For N=l,2, ■■-, \aNik)\ ^2-b3-N+ii32)2?~lbNik)

(4-1,2, • • -,»2*-»).

Proof of Proposition 1 and Lemma 1. Let P(m) and L(w) denote

the truth of Proposition 1 and Lemma 1, respectively, for N = m. The

proposition and lemma will be proved simultaneously by induction:

P(l) is trivial; P(2) and L(l) were proved by Newman [ó]. Thus,

it remains to be shown that P(A7-2), P(A7-1), and L(N-2) to-

gether imply LiN-l) and P(N).

For N^2, by (2) and (3), we have

M2»(Pn)   =  (l/2x) J       ( I  P, I )t

, n2V-l

=  | a^_i(0) | "+2   £   | <**_,(*) |2
*-i

rl 712^-2

= [M2*-i (P„)]  + 2  £   | ow_!(4) | .
*-i

Applying PÍA''—!), we obtain
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2N 2N-i 2N-1   (2iv-1-l/2) (2w-s-2)

M2»(Pn) Un      + 2(32)     n (log n)

+ (32)       « (log n) + 2¿, | aN_i(k) \2.

Now, if we let 22' denote the summation excluding j = 0 andj = ¿,

then by (3), L(N-2),P(N-2), and (6), it follows that

n2N-Z

| ax-i(k) |   g      X'      I aN-2(j)aN-i(i — k) \  + 2 \ aN-2(0)aN-2(k) \
i^k-niN-*

n2y-3

=■ 2-103-2^+6(32)^-^      £      b„-2(j)bN-2(j - k)
;-*-n2A,-a

/2-43-jv+3(32)2w-3       2-43-iV+3(32)2A'-2 \

+ (-—-+-—-) bN-i(k).
\     (log m)2JV-3 (»l'2 log2 n)    I

Set Cjv(/%) = ^%t-n2N^bN^i(j)bN-i(j — k). We need the  following  in-

equality:

CJV(¿) g (1.16)3VM¿)

(k = 0, 1, 2, • - • , »2"-i; iV - 2, 3, • • • ).

Assuming (11), we have

I aN^(k) |   =■ (1.16)2-103-JV+6(32)2^-26iv-i(*)

.(.+_?_+^—)
V        (32 log w)2"'3       n^2log2n/

S 2-53-N+2(32)2N-*bN-i(k),

i.e., L(N-l) holds.

Proof of (11). We will first prove a preliminary fact, namely,

(12)   cN(k) S (.58)3*bN(k)   (k = 0, 1, 2, • • • , w2*-»; ¿V = 2, 3, • • • ).

We proceed by induction. First we show that (12) is true for N=2.

By the Schwarz inequality, and (4), (5), we have

C(k) Ú   (   Ê  b\(j)   ¿  b\(j - k)) m =   £  b\(j) ú   ¿  b\(j)
\ j=k—n j=k—n / jmmk—n j«—»

= 4   X)   « + 4     E     »7/ = 4w8/2 + 4w2((\/« - 1)_1 - 2m"1)

= 8«3/2.

Thus, for O^k^Vn, we have c2(k) g8w3/2áw"2 log n = b2(k), while

for V«<¿^ 2 V«, we have c2(¿) g8«3'2g 16«2//feg (n2 log n)/k = b2(k).
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Before proceeding, let us note that

n2N-2

cN(k) = 2      22      bN-i(j)bif-i(j — k) (k odd),
y=(*/2)+i/2

n2H-l

= bN-i(k/2)+2     22     bx-i(j)bx-i(j - k)       ik even).
y=(*/2)-n

Now, for 2\/n<k^n/2, if 4 is, say, odd, we have

id(4) =      Z      4iÜ)íiO' - 4) = » 22        J-Mj - 4)
i-(*/2)+l/2 (t/2)+l/2s;sn/2

+ » S (»-y)-14lO'-4) + V» Z blij-k).
n/2<j<n—vn n—v/naJín

We consider two cases separately:

(I) 2\/n<k^(n/2) - y/n. In this case,

\c2(k)=n2 22 j-l(k - j)-1 + n3'2        22       j~l
(t/2)+l/2sj<t-s/n *-v/»S;sHvn

+ n2      Z     j-i(j - k)-1 + n2        22        (n-j)-Kj-k)-1
*+•»</«»/» n/2<js*+(n/2)

+ n2        22        in - lYKn -j + 4)-1
k+(nl2)<i<n~sn

+ n*'2     22     (n-j + 4)-1.
n—VnSJSn

Let us consider the first summation. Applying the inequality

log(A7(M -l))-UM- l)-1

è Z (1/j) á log(A7(M - 1)) + |tf-\

we obtain

«2       Z       j-Kk-j)-1
(*/2)+l/2sj<*-Vn

= (~2/4)(     z     (i/i)+    Z    a/j))
\   (t/2)+l/2£j<*-Vn ^n</s(*/2)-l/2 /

g (W2/4) (log(^^) + \n~"2 + hWn - §)"*)

g (M2/4)(log(vV2) + (4/V»)) á (w2/24) log«.



I97i] POLYNOMIAL EXTREMAL PROBLEMS IN IP 255

In a similar manner (making use also of the estimate log(l+x) <x,

x>0), one can find upper bounds on the other five summations, so

that we end up with the estimate \c2(k) ^ (2.6) (n2/k)log n.

(II) n/2—\Zn<k?Hn/2. In this case, %c2(k) breaks up into six

summations which are a bit different from those in case (I). Here

too, it can be verified that %c2(k) ̂ (2.6) (n2/k)log n.

If k is even (2y/n<kf*n/2), then

c2(k) = n2/k2 +     ¿     bi(j)bi(j - k),
y-(t/2)+i

and the same bound can again be gotten for c2(k). Thus, for O^k

ún/2,  c2(k)  satisfies c2(k)^(5.2)b2(k),  i.e.,   (12)  holds for  N=2.

Let us assume, now, that (12) holds for N— 1. For 0^k^n2N~3,

if k is, say, odd, then by (6) and (7) we have

cN(k) 2 »*£«
■-=-       y.      by-i(j)bif-i(j — k)
(«log«)2""'      (nlogn)2»-* ^km+il2       W       U

„2AT-3

= 2      Z      bN-2(j)bN-2(j — k)
j=(i/2)+l/2

t+n2iV-3

+ 2      £      bN.2(n2»-2 - j)b„„2(j - k)
:-niN-'+i

n2ff-2

+ 2        £        by.2(n2»-2 - j)¿y_2(«2"-2 -j + k)
3~k+n2N *+l

r        n2AT-» n2^-í  \

= 2 {      Z        +1     b^2(j)bN-2(j -k)^ 3cN_i(k)

á 3(.58)3Ar-16jv-i(¿)

_ (.58)3NbN(k)

~ (n log n)2"-% '

The same can be seen to hold if k is even. Thus, cx(k) ^ (.58)3Nbtf(k),

which proves (12).

We now prove a somewhat weaker form of (11), namely

(13) cN(k) g (1.16)3wiw(*)       for 0 ^ k á «2"-!.

Let 0 = fc^n2lf-K Then
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n2N-l

cN(n2*-2 - k) =   Z  bs-iij)bH-iij + k - n2»~2)
y—k

ntft-t-k

=        Z       bn-iij)bN-\ii + 4)
j-k

nff-2

+       Z       btr-iiflbs-iij + 4 - »2^-2)
J=n2N~t—k+l

= {      Z       + 22\bN-iij)bs-iiJ - 4) g 2CiV(4)

g (1.16)3*6^(4) = (1.16)3ArÔAr(«2Ar-2 - 4)

by (12), thus proving (13).

Finally, for 0g4i=«2Ar-2, we have

n2JV-2

c*(»2"-i - 4) =       Z      bN-iij)by-iiJ + k- n2"-i)

= Z bN-iiJ + n2N-2)bN-iiJ + 4 - »2*-2)

= Z bN-i(j)bN-i(j - k)

g cat(4) g (1.16)3*^(4) = (1.16)3¿vOAr(«2*-1 - 4)

by (13), which proves (11).

Returning to the proof of Proposition 1, we note that it follows

from (9) that

Z ak1(4) = 2w-12>iLi(4).
*-i t-i

Thus, applying L(N—l), we obtain

2  Z   I fl»-i(4) T a 2_VW+4(32)2 "    Z b%-i(k)
i-l t=l

= 2^9-^(32)^2:^-1(4).
*-i

Combining this with (8), we get
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niN-l

2  Z   \a*-i(k)\2ú 2-\2/9r~2(32)^
i-l

■ { z «^-'-"(íogw)'2"-1-"  +   z   («^A^aog«)«"-1-2'!
V. lsfcsv/» v«»<*S»/2

^ 2-7(2/9)JV-2(32)2JV-1»(2"-1-1/2>(log w)«"-1-2'.

Combining this with (10), we obtain

M$(Pn) á /_1 + 2"7(32)2"~V2"~1-1/2) (log«)"""1"2'

.7

|(2/9)"-2 +-+ —-\
\ (32 log m)2"-2      b1'» log2 bJ(32 log w)2"-2      b1'2 log2

^      2W_1    ,     /o^n2^1    C«*"1-!/« /, .(2^-2)
^ «      + (32)      n (log «) ,

which proves Proposition 1 (and Lemma 1).

3. An upper bound for the minimum of the sup norm.

Proposition 2. tnK,n < (1.1717) -t/nfor sufficiently large n.

Proof. Let %(x, y) — fl exp(%iru2i)du, so that %(0, x) is the familiar

Fresnel integral. Let A >0 be the value of x for which | g(— oo, x)\

is a maximum, and let M be that maximum: M= 1.6566 ■ • • , so that

M/y/2 = 1.1716 • • • . Proposition 2 follows directly from the follow-

ing

Lemma 2. Let

»        /     ¿2«    \
Pn(2) = Zexp(———- y

k-o        \an(n + 1)/.(n + 1)

wftere c» = l + (»+l)_1/4. TAew

max | Pn(e«>) \  = (M/V2)Vn + 0(n1'*).
!«)

Proof of Lemma 2. Let

(M2irt \
———— + iôu)
an(n + 1) /

so that Pn(e<$) = Z?-o F,(k). Let /,(«) = tty(2a,,(n+l))+M0/(2ir), so
that F«(w) =e2l</«(u). Now for 0 satisfying

(14) -*• - ir/a„ < 8 < ir - «■/<!„
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we have |/á(«)| ál— §(1 — 1 /#>.) for u in the interval [0, ra + l].

Remark. From now on, it is understood thatö satisfies (14).

Since, furthermore, f'$(u) is monotone, we can apply the following

lemma of van der Corput, which we state in the notation of Zygmund

[7, p. 198], although in somewhat greater generality.

Lemma 3. If f'(u) is monotone and \f'\ ^l—e in (a, b) (0<e<l),

then | D(F; a, b) | úA/e, where A is an absolute constant.

(Zygmund proves it for the case e = §, by showing that

D numerically does not exceed l + (2/ir) Zn-i ra-1(w — a)-1- Lt is

not hard to see that for any e, the bounding series becomes

(V"")Z"-i n~l(n — l-f-e)-1. Since the first term of the series is 1/e

and the sum of the remaining terms is less than 1, Lemma 3 follows

immediately.)

In our case, Lemma 3 yields

/» n+l n

Fe(u)du - Z Fe(k)
n k=a

2A
<iAnl'\

I/o»

Now, by making the change of variables v = (2/an)ll2(n + l)~ll2u

+ (e/ir)(han(n + l)yi2, we have

(i6) r
J o

n+l

Fe(u)du = Honin + l)yi2e<°$(t, (2/01/2(« + 1)1/2 + 0,

where t= (B/2Tr)(2aH(n + l))112 and a is real.

We now show that

(17) max | %it, (2/an)1'2(W + l)1'2 + i) |   = M + Oin'1'2).
(i)

In accordance with the Remark, the maximum is taken over all t

satisfying

nc\       o-112/    i  i\1/2/ 1/2 i    ~w\ ^ , ^ Y'2t    i  i\1/2/ 1/2       ~u\
(18) -2      in + l)    (a„   + an    )^t<2   (w + 1)    (an   - an    ).

Before proving (17), let us note that by making the change of

of variables v = u2 and integrating by parts, we get

$ix, «) = ÍTx)-H-expi\irx2i) +0ix-3),

so that for sufficiently large x,

(19) \%(x, oo)|   <(3x)-K

Now let i„ be a value of t for which \%(t, (2/a„)1/2(M+l)1/2+<)!
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attains its maximum. Since %(x, y) = i$(—y, —x), we may assume

that i„= -(2/an)ll2(n + iyi2-tn, i.e.,

(20) tnú- (2an)-UÎ(n + l)1'2.

If n is sufficiently large so that —A is greater than the lower bound in

(18), then by (19) we have, on the one hand,

\$(tn, (2/anyi2(n + iyi2 + tn)\

â \U-A,(2/any2(n + iyi2-A)\

^ I %(-A, oo) | - | 5((2/fl»)1/,(» + I)1'2 - A, oo) |

1
> M-> M - Ib"1'2,

3((2/an)i/2(B+l)1'2-^)-

and on the other hand, by (19) and (20),

\%(tn,(2/anyi2(n+iyt2 + tn)\

á | %(-«>, (2/any*(n + iyi* + tn)\ + | %(- *>,Q\

á | 5(-*,¿)|  +§|4|-1 = M + íb-1'2

for sufficiently large n, which proves (17).

Combining (15), (16), and (17), we obtain

max | Pn(eiS) \ = 2-"2(l + (n + l)-1'«)1'*^ + iy2M + Oí«1'4)

= (M/V2)Vn + 0(b»'4). Q.E.D.
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