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THE STRICT TOPOLOGY AND SPACES
WITH MIXED TOPOLOGIES

J. B. COOPER1

Abstract. In a paper about twenty years ago, and later

papers, R. C. Buck introduced a new topology, the strict topology,

on spaces of continuous functions on locally compact spaces. Since

then, a considerable amount of work has been done on these and

similar topologies by, among others, Conway, Collins, Rubel and

Shields (see references [2], [3], [4], [6], [7], [IS]). In the early

nineteen-fifties, the Polish mathematicians, Alexiewicz and

Semadeni, considered a vector space E, on which two norms are

defined, and defined a notion of convergence of sequences on E

which in some sense mixed the topologies given by the norms ( [l J

and later papers). In 1957, Wiweger [17] showed that under nat-

ural restrictions, the space E could be given a locally convex space

structure where convergent sequences were precisely the sequences

considered by Alexiewicz and Semadeni. Since then, this method

of mixing topologies has been studied and generalised by several

mathematicians ([18], [9]).

The purpose of this note is to show that the strict topology for

function spaces is a special case of a mixed topology. We then in-

tend to use the theory of mixed topologies to give quick proofs of

the basic results on strict topologies. This has the advantage of

giving simpler proofs and of eliminating some heavy analysis. It

also allows the definition of strict topologies in a more general set-

ting than has been considered until now and in some cases gives new

results for the standard situation.

The plan of our paper is as follows: In the first section we state

some of the standard definitions and results which will be used in the

later sections and we define mixed topologies. The next section is

devoted to a development of mixed topologies. The results in this

section are essentially due to Alexiewicz, Semadeni, and Wiweger.

It has seemed to us worthwhile to give these proofs for the following

reasons. Firstly the original proofs are scattered throughout a number

of fairly inaccessible papers. Secondly, the conditions we impose on

the original topologies are less restrictive than those of the above

Received by the editors July 14, 1969 and, in revised form, June 20, 1970.

AMS 1969 subject classifications. Primary 5420, 5428.

Key words and phrases. Locally convex spaces, two normed spaces, mixed topolo-

gies, strict topologies.

1 The author would like to express his gratitude to the Laboratorio de Física e

Engenharia Nucleares, Sacavém, Portugal, for the use of an office during the year

when this paper was written.

Copyright © 1971, American Mathematical Society

583



584 J. B. COOPER [November

authors. Thirdly, the hypotheses which we consider have the double

advantage of being sufficiently general for any applications and

sufficiently strong to allow brief proofs of the results. We note that

our treatment has some points in common with a paper of Garling [9].

In the third section we give definitions of function spaces with

strict topologies and show that these topologies can be realised as

mixed topologies. Finally we apply our results to give quick proofs

of the standard results and suggest possible extensions.

The technique of mixing topologies has a number of applications

in various branches of analysis, notably summability theory, measure

theory on nonlocally compact spaces, and interpolation theorems for

analytic functions, and the author hopes to develop these applications

in detail in a later paper.

It has been pointed out to the author that some of these results

have been obtained independently by J. H. Webb.

During part of the period of preparation of this paper, the author

received a grant from the Gulbenkian Foundation in Lisbon.

1. Preliminaries. The terminology in this paper will be the stan-

dard terminology of locally convex space theory. We shall use the

abbreviation LCS for locally convex space. The following definition

is due to Grothendieck. This and the properties of (DF)-spaces can

be found in reference [10].

Definition 1. A (£>.F)-space is an LCS E which possesses a fun-

damental sequence (Bn) of bounded sets and has the property that

if (Un) is a sequence of closed, absolutely convex neighbourhoods of

zero so that U = f\ñ~ i Un absorbs bounded sets of E, then U is also

a neighbourhood of zero.

The properties of (.DF)-spaces which we shall require are the

following:

Proposition A (Grothendieck). If E is a (DF)-space then

(i) a linear map u from E into an LCS F is continuous iff u\Bn is

continuous for each n ;

(ii) the strong dual (£', ß(E' E)) of E is a Fréchet space.

(jDF)-spaces are of frequent occurrence in analysis. Important

examples are normed spaces and the strong duals of metrisable LCS's.

The following definition is motivated by the behaviour of Fourier

series expansions.

Definition 2. A (C, 1) basis for an LCS £ is a sequence (x„) in

E with the property that if x£E there is a unique sequence (£„) of

scalars so that the partial sums s„= X/t-i £*** converge (C, 1) to x.

That is, if (T„ = (l/w) 2*-i 5*> tnen <Tn-^x in E.
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We shall also require the following generalisation of Köthe's com-

pleteness theorem:

Proposition B (Raikov [13]). Let E be an LCS E, (Fn) a sequence

of absolutely convex subsets of E such that

(i ) Fn + Fn Q Fn+1 for each n ;

(ii) an absolutely convex subset V of E is a neighbourhood of zero in

E iff V(~\ Fn is a neighbourhood in Fn for each n ;

(iii) each F„ is a complete subset of E.

Then E is a complete LCS.

A two-normed space is a vector space E on which are defined two

norms || J| and     ||* so that

(i) ||x|[*^||x   for each x in E;

(ii) B= {xE-E:||x|| gl} is closed in the normed space (E,

Then a sequence (x„) is said to be 7-convergent to Xo if sup||x;

and ||x„ —x0||*—»0 as rc-^°°. Alexiewicz developed a theory of two-

normed spaces using the notion of 7-convergence of sequences. In

the articles [17] and [l8] Wiweger showed that E could be given an

LCS structure whose convergent sequences were precisely the 7-con-

vergent sequences. Choose a sequence (£/„) of absolutely convex

neighbourhoods of zero in (E, || ||*) and let

v = u (u* r\ b + u*2 n ib + ■ ■ ■ + ul n %b).
n=l

Then the set of all such sets Uy forms a base of neighbourhoods

of zero for the required LCS structure.

We consider the following situation. We have a vector space E

with two LCS structures r and t* satisfying:

(i) t is finer than t*;

(ii) (£, r) is a (DF)-space with a base (Bn) of absolutely convex

bounded sets such that B„-\-BnQBn+i for each n;

(iii) each Bn is T*-closed.

Then we can define an LCS structure 7=7[t*, r] on E as follows.

Take a sequence (t/„) of absolutely convex r*-neighbourhoods of

zero and let

Uy = y(U*n) - u (¡7xnBt + • • • + U*nC\Bn).
11=1

Then the set of all such V forms a base of neighbourhoods of zero

for an LCS topology y[r*, r] on E.

For future reference we note the following points. The space E has

three topological duals, namely (E, r*)', (E, y)', and (E, r)' which
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we denote by E(, El, and El in that order. It follows from Proposi-

tion 1 (ii) that E{ can be regarded as an (algebraic) subspace of El

which is in turn a subspace of Ei. The spaces E(, El, E{ will usually

be regarded as LCS's with their strong topologies of uniform con-

vergence on the appropriate bounded subsets of E.

2. Properties of mixed topologies. The following proposition gives

the main properties of y[r*, t].

Proposition 1. (i) y is independent of the choice of (Bn);

(ii) T*Ç7[r*,T]Çr;

(iii) t*' = y on i--bounded sets;

(iv) a collection H of linear maps from E into an LCS F is y-equi-

continuous iff H\Bn is r*-equicontinuous for each n: In particular a

linear map u from E into F is y-continuous if and only if u\Bn is

t*-continuous for each n;

(v) a sequence (x„) in E is convergent to zero in y iff (xn) is r-bounded

and x„—»0 in t*;

(vi) t and y [t*, t] have the same bounded sets so that El is an LCS

subspace of El ;

(vii) r=7[r*, r] if y is bornological;

(viii) a set AÇ.E is y-compact iff it is r-bounded and r*'-compact;

(ix) 7 is the finest LCS topology on E coinciding with t* on r-

bounded sets;

(x)  (E, y) is complete iff each Bn is t*'-complete;

(xi) if Ti and t2 are two suitable topologies on E, then y [^ , r ]

= 7[T2. t] iff Ti =T2 on r-bounded sets;

(xii) El is the closure of E[ in El (with its strong topology as the

dual of (E, t)') and so is a Fr ecket space.

Proof, (iii) Consider a r-bounded set B. We can choose a positive

integer r so that B—B<^Br. Let Bi^(x0+y(U*)) be a neighbourhood

of XoEB in y\B and take U*=U*. Then U*r\(B-B)QU*I^Br
Qy(U*). Hence (x0+ U*)r\BQ(Xo+y(U*))r\B.

(iv) If H is 7-equicontinuous on E, it is certainly 7-equicontinuous

on r-bounded sets of E. By (iii) it is then r*-equicontinuous on

r-bounded sets.

Conversely, suppose that H is r*-equicontinuous on each Bn. Let

W be an absolutely convex neighbourhood of zero in F and let

Wn= (l/2n)W (n = \, 2, ■ • •)• There are r*-neighbourhoods (U*) so

that if uEH,

u(utr^Bn)Q Wn.

Then for any n, uEH,
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u(u*r\ Bi + utn Bt + • • • + u*r\ Bn) c w, + • • ■ + wn c w

and so u(y(Un))C.W for each u in H.

(ii) We show first that t*Ç7[t*, t]. Consider the identity map

from (E, y[r*, r]) into (E, r*). This is r*-continuous on r-bounded

sets and so is continuous by (iv).

For the inequality y[r*, r]Çr we consider the identity map from

(E, r) into (E, y[r*, r]). Then by (iii) and the fact that t*Qt, this

is T-continuous on r-bounded sets. Hence it is continuous by Propo-

sition A(i).

(i) Let (Bn) and (C„) be appropriate sequences of bounded sets

in E and let 71 and 72 be the corresponding mixed topologies. Now

apply (iv) to the identity maps (E, 71)—>(E, 72) and (E, y2)-^(E, 7^.

(v) By (iii) we need only show that if x„—>0 in 7, then (x„) is

r-bounded. If this were false, we could find a subsequence (x*n) so

that xkn($zBn. Since Bn is r*-closed we can choose a r*-neighbourhood

U„ so that xkn^Bn+2U„ and we can also suppose that Un + U*

££/„_! («>1). Then for each »>1,

00

uy = u (ul n b1 + ■ ■ ■ + ul r\ Bk)

00

Ç   U   ((5, +   •   •   •   +  Bn-! +   U*n   +   U*n+l+   ■   •   •   +   UÏ+P))
p=l

Ç Bn+ 2<7*

(recall that 5,- + J3,-ç:5,-+i for each i so that Bx-\- • • • +Bn-iQB„).

Hence xkn(£Uy for each n which contradicts the fact that (x„) is a

null sequence. This argument is an adaptation of a proof of Wiweger

in [17].

(vi) Suppose that B is a y[r*, t]-bounded set, (x„) a sequence in

B, and (X„) a null sequence of positive scalars. Then (Vaä) is a

7-null sequence (since \An-»0) and so is r-bounded. Hence Aä—»0

in r. Then B is r-bounded by a well-known characterisation of

bounded sets in LCS's.

(vii) By (vi), the identity map from (E, 7) into (E, r) is bounded

and so would be continuous if (E, 7) were bornological.

(viii) Suppose that A is 7-compact. Then A is 7-bounded and so

r-bounded. Then t* =y on A and so A is r*-compact. The converse

follows immediately, again from (iii).

(ix) By (iii), 7 is such a topology. Conversely, if 7' is an LCS

topology agreeing with r* on r-bounded sets, then the identity map

from (E, 7) into (E, y') is continuous by (iv), i.e. 7 is finer than 7'.
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(x) This follows from (ix) and Proposition B.

(xi) liy[rf,T]=y[T*,T] then by (iii), t1*=7[t1*, r]=7[r*, t]=t*

on t-bounded sets. The converse follows from (ix).

(xii) Firstly, El is an LCS subspace of El and (iv) implies that

it is complete and so closed. We show that E{ is dense in El. Let B

be a closed absolutely convex r-bounded set of E and e a positive

number. If fEEl, then by (iv), there is an absolutely convex r*-

neighbourhood of zero U such that \f(x)\ <e if xEB(~\U, i.e.

fEe(Br\U)° (polar in £*, the algebraic dual of E). But B°+U° is

absolutely convex and <r(E*, £)-closed so (BC\ U)° = B° + U°. Hence

fEe(U°+B°) and so there is a gEeU°QEl such that f-gEeB°, i.e.

\f(x)-g(x)\^eiixEB.
Remark. The argument used to prove (xii) is taken from the proof

of Grothendieck's completeness theorem (see [16, p. 148]).

We now give an example of a natural LCS topology which is a

mixed topology. Let E' be the dual of a metrisable LCS E and let

r=ß(E', E), T*=cr(E', E). Then clearly r and r* satisfy the condi-

tions for the definition of a mixed topology and we identify 7[t*, r].

(For the case E a normed space, this example has been considered by

Wiweger.)

Proposition 2. With the above notation, y[r*, t]=tc, the topology

of uniform convergence on the precompact subsets of E.

Proof. Consider i:(E', y)—*(E', rc). This is continuous by

Proposition l(iv) since <r(£', E) and rc agree on ß(E', £)-bounded

sets by a standard property of equicontinuous sets (see Schaefer

[16, p. 85]). Conversely, rc is the finest topology agreeing with

<r(E', E) on equicontinuous subsets of E (Banach-Dieudonné theo-

rem) and so is finer than y.

Corollary. If E contains a(E', E)-compact sets which are not pre-

compact, then y is not the Mackey topology r(E', E).

3. Spaces with mixed topologies. In this section we consider the

two most frequently studied examples of strict topologies and show

that these topologies can be obtained as mixed topologies.

Firstly we suppose that S is a locally compact space and that C(S)

denotes the vector space of bounded continuous complex-valued

functions on S. We give C(S) the following LCS structures:

a—the Banach space topology defined by the norm

11/11 =sup{ |/(5)| : í ES}.
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K—the topology defined by the family of seminorms

pK(J) = sup{|/(5)| :sEK\

as K runs through the compacts subsets of 5.

ß—the topology defined by the family of seminorms

U/H* = sup{ 1/(5)0(5)1 :sES}

as <j> runs through the space Co(S) of functions of C(S) which vanish

at infinity.

Among the reasons for introducing the topology ß is that it has the

following properties in contrast to a. The dual of (C(5), ß) can be

identified with a space of measures on 5 rather than on the Stone-

Cech compactification of 5, and the continuous multiplicative func-

tionals on (C(S), ß) can be identified with 5 in the usual way. The

strict topology was introduced in [2] and has been studied in [S],

[ó], and [7]. We show now that ß is the mixed topology defined by er

and K. This turns out to be surprisingly difficult. We require the

following result of Wiweger [l8J.

Proposition C. Let y be the mixed topology y[r*, r] where

(i) the topology r is a normed topology defined by the norm ||  || which

satisfies the condition that if x£.E,  ||x|| =sup {pa(x):aÇzA}  where

{pa'-ccEA } is a family of defining seminorms for r*;

(ii) if {pn'-n = l, 2, • • • } is a subsequence {pa:a£A }, xGE, e>0

then for every positive integer p, there are vectors y, z of E such that

x = y+z,pi(z)=0(i = l, ■ • ■, p) and\\y\\^max{pi(x):i = l, ■ ■ -,p}+t.

Then the sets of the form 1"^", \x:pi(x) ^a,} form a base of neighbour-

hoods of zero for y as {pi} ranges over the countable subsets of A and

a,- ranges over all families of positive numbers so that a,—* «> as i—> °°.

We show now that the topologies k and a on C(S) satisfy the condi-

tions of Proposition C. (i) is immediate so we consider (ii). Let Kn be

a sequence of compact subsets of S, f an element of C(S) and e a

positive number. If p is a positive integer we put K = \Jn.1 K„. By

the uniform continuity of / on K and the local compactness of 5 we

can find a compact set K' of 5 such that XÇint K' and pK-(f)

= Pk(Í) +e- Let 4>i, fa be functions in C(S) so that
(i) 0 Ú4>i Ú1 (i = 1, 2) and ^+02 = 1 on S;
(ii) (pi = 1 on K and <pi = 0 on eK';

(iii) 02 = 0 on K and 4>2 = l on QK'.

Then let g=0i/, Ä=<fc/so that/ = g+A. h(s) =0 for s£K, i.e. pKi(h) =0
(» = !,..., p). Also
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|k|| = pK'(g) è pK-(f) Ú max{pKi(f):i = 1, ■ ■ -,p\+ e.

We can now prove:

Proposition 3. With the above notation, ß is the mixed topology

7 k <r].

Proof. We show first that the identity map (C(S), y [k, a])-^(C(S), ß)

is continuous. By Proposition 1 (iv) we need only show that it is k-

continuous on the set Bk = IfEC(S):\\f\\ ^k} (k>0). Consider

4>ECii(S) and let V= {fEC(S):\\f<p\\ a«}. Then there is a compact set

iCsuch that \<¡>(S)\ <e/2kiîxEK. Let U= {fEC(S):pK(f)^e/\\<t>\\\.
Then BkC\ UQ V.

Conversely, consider a 7-neighbourhood V which, by Proposition

C, we can suppose to be of the form {fEC(S):pn(f) 5ia„ ) where for

each n, pn is the /c-seminorm associated with a compact subset Kn of 5.

We can further suppose that the sequence (a„) is strictly increasing

and that KnÇ.'mt Kn+1 for each n. Then we can construct a <f>ECo(S)

with support contained in l¡ñ=i Kn such that cj>(s) = 1/oti (sEKi) and

I/o- ^<p(s) ^ i/an+1 (sEKn+l\Kn). Then if ||/0|| ^lJEV.

We observe now that the space C(S) and its topologies k and a can

be defined without requiring that S be locally compact. Also k and <x

will be such that the mixed topology 7 [a, a] can be defined. Therefore

we make the following

Definition 2. Let 5 be an arbitrary topological space, C(S) the

space of bounded continuous complex-valued functions on 5. Then

the strict topology ß on C(S) is defined to be the mixed topology.

In the next section we shall use Proposition 1 to show that the

known properties of (C(S), ß) for 5 locally compact extend to arbi-

trary S.

The second important example of a strict topology is the space H°°

of bounded analytic functions on the unit disc U= [z.\z\ <l] in the

complex plane. We can give Hx three topologies <j, k, ß in a way

similar to C(S). Then as above we can show that ß is the mixed

topology 7[k, a}. The space (Hx, ß) has been studied in [4], [14],

and [15].

4. The spaces (C(S), ß) and (Hx, ß). We now give a list of prop-

erties of (C(S),ß) and (H™, ß) which follows from Proposition 1 and

the above remarks. These properties are essentially known (for the

case 5 locally compact).

Proposition 4. Let S be a Hausdorff space, (C(S), ß) as above. Then

(i) kC/3Ç<t and when S is completely regular, a =ß iff S is compact;
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(ii) (C(S), ß) is complete if and only if S is such that every complex-

valued function on S which is continuous on compact subsets of S and

bounded on S is continuous;

(iii) the ß-bounded subsets of C(S) are the uniformly bounded subsets ;

(iv) on uniformly bounded subsets of C(S), ß = k ;

(v) a sequence (/„) in C(S) is ß-convergent to zero if and only if it is

uniformly bounded and K-convergent to zero ;

(vi) if S is completely regular, ß is metrisable iff S is compact;

(vii) a linear map from C(S) into an LCS F is continuous if and

only if its restriction to uniformly bounded sets is continuous for k;

(viii) ß is the finest LCS topology on C(S) which agrees with k (or ß)

on uniformly bounded sets of C(S).

The proof follows immediately from Proposition 1. We remark that

(viii) answers a question posed in [ó].

We now turn to (Hx, ß). Firstly, this space has properties (i),

(iii), (iv), (v), (vii) of Proposition 4, is complete and is not metrisable.

We note also the following points which are special to (ii00, ß).

Proposition 5. (i) Bounded sets of (H™, ß) are relatively compact.

Hence (H™, ß) is semireflexive and its bidual is (HK, a) ;

(ii) (Hx,ß) is separable. In fact the sequence {z*-^>zn: ra = 0,1, 2, • • • }

forms a (C, 1) basis;

(iii) (H°°, ß) cannot be a (DF)-space and a fortiori is not quasi-

barrelled ;

(iv) ß is the topology of uniform convergence on precompact subsets

of (i/°°, ß)' and so is not the Mackey topology.

Proof. We note the following points, (i) This follows immediately

from Proposition l(viii) and Montel's theorem for normal families.

(ii) If f(EH let Sn'.z—»23t-o ctkzk be the rath partial sum of the

Taylor expansion of/. Let (r„ = (l/(ra+l))(io+ ■ ■ • + s„). Then sn—>/

in k and so certainly <r„—>/. By Proposition 1 (v) we need only show

that the sequence (<rn) is uniformly bounded. This follows from the

usual kernel representation of (<rn). (See, for example [12, Chapter 2],

or  [4].)

(iii) The author has shown in [8] that a (DF)-spa.ce in which

bounded sets are relatively compact is bornological. Hence if (HK, ß)

were a (.DF)-space, by (i) we would have /3=<r which is certainly not

true.

(iv) By the Corollary of Proposition 2, we need only display a

weakly compact subset of (ü°°, ß)' which is not norm compact. This

has been done by Conway in [7].
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