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SPLITTINGS OF HOCHSCHILD'S COMPLEX
FOR COMMUTATIVE ALGEBRAS

PATRICK J. FLEURY1

Abstract. Barr has shown that one may split Hochschild's

complex for commutative algebras into Harrison's complex plus a

shuffle subcomplex when working over a field of characteristic

zero. We construct a splitting here for the above complex over a

ring containing a field which does not have characteristic two and

this splitting has Barr's splitting as a special case.

1. Introduction. In [l], Barr noted that Harrison's homology

could be regarded as a direct summand of Hochschild's homology

when working over a field, k, of characteristic zero. In order to split

Hochschild's complex, Barr constructed an idempotent in &2n for all

n ^ 1 and showed that this idempotent was a chain map which had for

its kernel the "shuffle" subcomplex. The purpose of this paper is to

generalize this splitting to commutative algebras over rings con-

taining fields of any characteristic not equal to two.

2. The complex, shuffles and representations. In [l], it is shown

that, if one considers a commutative algebra, A, over an arbitrary

commutative ring, k, and then takes coefficients only in symmetric

^4-modules, Hochschild's complex in the «th dimension is just

CnA=A®A{n). The nth tensor power of A is denoted by AM and

tensor products are taken over k unless otherwise specified. Sym-

metric 4-modules are known to be the same as left .4-modules

(see [l]). Then the map dn' C„A—>Cn-iA by

dn(o-o ® ai ® ■ ■ ■ ® a„) = a0ai ® ■ ■ ■ ® an — a0 ® aia2 ® • • ■ ® a„

4- • • • 4- (—l)"a0a„ ® a-i ® • • • ® an-i

will be A -linear and a boundary operator. We will denote the entire

complex just defined by C*A, and, in agreement with the notation of

other authors, we denote an element of CnA by a0[ai, • • • , an]. Let
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us note, for future reference, that di'.QA—tCoA is zero. From the

foregoing we may now conclude that

Hoch* (A,M) = H*(C*A ®A M)    and

Hoch* (A, M) = #*(Honu (C*A, M)).

Now let 2„ denote the symmetric group on n-letters and define an

action of S„ on CnA by

ir_1(do[<ii, • • • , an]) = ao[aT(i), ■ ■ ■ , al(„)].

Thus CnA becomes a £2„-module. We shall define a shuffle, Si,B-»i

O^i^n, in kXn by So,n = Sn,o = l and

Si,n-i(a0[au ■ ■ ■ , an}) = a0[ai] ® J,_i,n-¿([a2, • • • , a„]) + (—iyao[o{+i]

® i,-,n-.-i([ai, • • • , ai, ai+2, • • • , an]).

Then we have the following proposition whose proof appears partly

in [l] and partly in [3].

2.1. Proposition.

d„Si,n-i(ao[ai, • ■ ■ , an])

= Si-i,n-i(dia0[ai, ■ ■ ■ , at] ® [ai+i, ■ ■ • , an])

+ (—iysi,„-i-i(a(,[ai, ■ • ■ , at] ® d„-2[ai+i, ■ • ■ , an]).

Because of the above, one may consider the shuffles as multiplica-

tion in the differential graded algebra C*4. The complex C*4, has

an augmentation, i.e., a map of complexes to 4 which is considered

as a trivial complex over itself. The kernel of this mapping is a sub-

complex of C*4 and we will call it J*A. Since we noted before that

di was zero, it is easy to see that J„A = C„4 if n> 0 and J0A = 0. Now

consider J\A which we define to be that subcomplex of /*4 generated

by nontrivial shuffles. We now set Ch*A =J*A/J%A. Then the differ-

ential and grading of J*A induce a differential and grading on Ch*A.

We define the nth Harrison homology and cohomology groups of 4

with coefficients in the left 4-module M to be

Harrn(4, M) = Hn(Ch*A ®A M)    and

Harr«(^4, M) = ff"(HomA(CÄ*4, M))

and we denote the total homology and cohomology by Harr* (4, M)

and Harr*(4, M) respectively.

Of special importance to us in the ring &2„ will be the element En

defined in the following manner. Let sgn:S„—>k be the group homo-
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morphism sending elements of the alternating subgroup to 1 and other

elements to —1. Then we may extend sgn to a ring homomorphism

also called sgn:£2n—>&. Let En=^r&^„ (sgn(it)) -it. If mE&2„,

then, clearly, u-En =sgn(u) ■ En.

2.2. Lemma    (Barr    [l]).    Let   a0[ai, ■ ■ ■ ,    an]EJnA.    Then

dnEn(a0[ai, ■ • • , a„])=0. Furthermore, if uEk~Zn and

dnu(ao[au ■ ■ ■ , a„]) = 0

for all a0[ai, ■ ■ • , an]EJnA, and arbitrary A, then u is some multiple

Of En-

3. The splittings. We are interested in splitting Hochschild's

complex. Barr has shown that, if one works over a field of char-

acteristic zero, then the complex can be split in such a way that

Harrison's groups are direct summands of Hochschild's. We shall

use techniques which will give us Barr's theorem as a special case of

a more general theorem.

Earlier, we noted that each s,>_j could be considered as an element

of k1in. We now define another element, s„, of kZ„ in the following

way. If n — i, 5! = 0; if n^2, sn = X^-i1 $•,»-»■ It is clear that

Si,n-i'-JnA—*JnA need not be a chain map, but Barr in [l] proves

3.1, 3.2 and 3.3.

3.1. Lemma. dnSn = sn-idn.

3.2. Lemma. sgn(jJlB_,) = Q).

3.3. Corollary. sgn(s„) =2"—2.

3.4. Proposition. ((2n — 2)— s„) • • ■ (2— sn)siin-i = 0forall l¿i ¿n

and all «=ï 1.

Proof. We proceed by induction, the case for w = l being trivial.

Now assume the proposition is true for n— 1. Then

dn((2n-1 -2) - s„) ■ ■ ■ (2- sn)si,n_i

=   ((2"-1 - 2) - Sn)  •  •  ■ (2 - SnKSi-Ln-iidi ®  1)

+   (-l)'5.-,n-.-l(l   ®dn-i))

by 2.1 and 3.1. By induction, both terms in the above sum are zero.

This implies ((2n_1 — 2)— s„) ■ - - (2— sn)s,-,„_t- is some multiple, say

r, of En. Thus

((2« - 2) - Sn) ■ • • (2 - Sn)Si,n-i =  ((2™ - 2) - Jn)-f£„

= ((2-- 2) -sgn(j.))-r-£. = 0.
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Now suppose we consider e'n=((2n — 2)—sn) ■ ■ ■ (2—Sn)Ek2n

where k is a field of characteristic p. Now consider (e'„)2. If we

expand (en)2 in terms of sn, then every term, excepting only the

first, is a multiple of e„s„ and is zero by Proposition 3.4. Thus (e„)2

= {ITss«s» (2* — 2) }en. If we could multiply e'n by the inverse of

LLsísn (2* —2) we could make e'n into an idempotent. Unhappily,

this is not always possible since that product might be zero in k.

Certainly, it is possible when we are working over a field of char-

acteristic zero. Furthermore, if we are working with a field of char-

acteristic p, and 2 is a primitive root modulo p, then we may divide

by the above product in dimensions up to but not including p. In

order to investigate this further, we shall need some facts about

idempotents in arbitrary rings.

3.5. Proposition. Let T be a (possibly noncommutative) ring. Let

a be a nonnilpotent element of T such that a2 —a is nilpotent and let

m be the least integer with (a2—a)m = 0. Then there is a nonzero poly-

nomial, pm(x), with integral coefficients and am{pn(a)}m is a nonzero

idempotent.

3.6. Proposition. pm(x) = l + (l-x)+ ■ ■ • +(l-x)m~l.

The proof of 3.6 is an easy (but messy) induction, so we omit it.

For 3.5 we refer the reader to Herstein [6, p. 22]. We note, for future

reference, that Proposition 3.5 implies am = am+1pm(a). Let us now

return to our consideration of J*A. Letj be the order of two in the

group of units modulo p. Let r be the inverse of Il^s.sy (2i — 2) in

that group of units. Let us now set

Wn = f(((2' - 2) - Sn) ' ' ■ (2 - Sn)).

Then wn will be a polynomial in sn with constant coefficient 1.

3.7. Proposition. w\—wn is nilpotent.

Proof. In the ring ZS„, we have the equation

(*) ((2» - 2) - s,) • • • (2 - sjsij = 0.

We know that 2" —2 is congruent to 2n_-' —2 modulo p. Thus, if we

consider the sequence of factors of (*), we will have s,-,,-, (2 — s„), ■ • • ,

(2>-2)-sn, (2**-2) -Sn, ■ • ■ , (2n-2)-Sn and if we reduce the

sequence following Sij modulo p, we see that it repeats itself after

j terms. Suppose n = mj+i, 1 ̂ i^j. Then, when we reduce (*) modulo

p we will have
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(-l)-((2' - 2) - sn)m ■ • • ((2i+1 - 2) - sn)"

.((2< -   2)   -  in)»*1   •   •   ■   (2  -  *■)-«(*)"*«  -  0

as an element of kZn- This implies that (tt>„s„)m+15¿,y = 0. By a remark

above w„ — i is a polynomial in 5„ which lacks a constant term. Thus

(w2n-Wn)»'+1 = (Wn)m+1(v>n-i)m+1 = (Wn)m+l(Sn)m+lH(Sn)=0        in ¿2n

where H(x) is some polynomial in k[x]. Now let us set

en= {wn(pm+i(wn))}m+1- From the foregoing, it is obvious that en

is an idempotent. We do not yet know it is nonzero and before we

can show this, we must have the following theorem.

3.8. Theorem. dnen = en-idn.

Proof. We assume n = mj+i, 1 ¿i¿j. If i>\, we have

dnen = dn(wn{pm+i(w„)})m+l = {w„_i/'m+i(wn_i)}'n+1dB = en-id„.

If * = l,thene»= {wnipm+iiwn))}m+1 and en-i = {wn-ipm(wn-i)}m. Now

we note that pm+1(wn) =pm(wn) + (l —wn)m. Thus

dnen  =  dn{wnpm+l(w„)}m+1   =   { W„-l/>m-f-l(Wn-.l) } m+'¿n

=   {{wn-lipmiWn-l))}m+1  +   im+í)iWn-l)m+1iPÁWn-l))mií-Wn-l)m

+ ■ • • + K-i)m+1(i - ™„-i)m(m+1)K

Now every term of the form a(Wn-i)m+l{pm(wn-i)}m+1~'(l—wn-i)tm

is zero since 1 — wn-i does not have a constant term and, thus, every

term of the above form will have a factor of the form (wn-isn-i)m and

this last is zero. Now the only possible nonzero term is the first.

So we have

dnen = {w„-i(pm(w„-i))}m+ldn

=  iWn-l)m+1 ■ pmiWn-l) ■ { í*0»-l) } m¿n

=   iWn-l)m{pmiW„-l)}mdn   =  e„_l¿„

since (w„_i)m = (w„_i)m+1/>m(w„_i) by the remark after Proposition 3.6.

3.9. Proposition. en is nonzero.

Proof. We shall proceed by induction. Since the field we are work-

ing over does not have characteristic two, it is easily seen that e2

is not zero. Now let n be the smallest integer with en = 0. Then

en-i^O. Consider the commutative polynomial algebra over k in a

countable number of variables, say k[xi, ■ ■ ■ ]. Then, since e„ is

zero, e„[xi, • ■ • , xn]=0. Thus

dnen[xi, ■ ■ ■ , xn] = en-id„[xi, ■ ■ ■ , xn] = 0.
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Then

en-i(xi[x2, - - - , xn] — 1*1*2, •••,«■]+••■

+ (-l)"a;B[a;i, • • • , x„_i]) = 0.

Since the terms inside the parentheses are linearly independent over

&2„, then we see eB-i[*i, • • • , XiXi+i, ■ ■ ■ , xn] =0 for all i. Suppose

7T and a are two elements of 2„ which appear in en-i- Then

v([xi,  •  ■  ■ , XiXi+i,  ■  ■  ■ , Xn])  = 0-([xh  ■  ■  ■ , XiXi+i,  ■  ■  ■ , xn])

if and only if tt =<r. Thus, in order for en-i([xi, • ■ ■ , XiXi+i, • • • , x„])

to be zero, en-i must be zero. This is a contradiction and we are done.

Using the en's we have constructed, we see that there is a natural

splitting of the complex 7*4 which is given in the rath dimension

by (/*4)n = en(7*4)„ + (l— en)(J*A)„. We would now like to deter-

mine the kernel of en. Apply the following filtration to .7*4. We let

FiJ*A be J*A if i>0, F0J*A=JlA, and Ft/*4 be the subcomplex
whose rath dimensional summand is (sn)~i(J*A)n if i<0. Clearly each

FiJ*A is a complex and F,-7*4 contains F,_i/*4 and so is a filtration.

We note that the complex Fi/*4/F0/*4 is merely Ch*A.

3.10. Proposition. Let n = mj+i, i^i^j. Then e„(F_m/*4)„ = 0.

Proof. Let xG(F_m/*4)„. Then x = (sn)m(y) for y some nontrivial

shuffle. Then

en(x) = (wn)m+1(s„)m{pm+i(wn)}"'+1(y) = 0

since (wn)m+1(sn)mSij = 0 for all shuffles s<,,-.

3.11. Proposition. Let n = mj+i, l-^i^j. If en(x)=0, then

xE(F-mJ*A)n.

Proof. We know that en = 1+ XXi o»(^n)* for some integer t.

Therefore, if en(x)=0, x= — XXi ($»»)*(#) =Sn(xi) for some x\. By

the same reasoning, 5„(xi) = (sn)2(x2). Thus xEsn (J%A)n. Continuing

in this manner, we find that xE(sn)m (/*4)„ for every m and the

proposition is proved.

We can now state our main theorem.

3.12. Theorem. Let k be a ring containing a field of characteristic

p (p9¿2). Let j be the order of 2 in the group of units of k. Let A be a

commutative algebra over k and M a left A-module. Construct J*A and

filter it as before. Let n = mj+i, 1 ̂ i^j. Then there exist natural trans-

formations
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<bn(A,M):   Kochn(A, M) ->Hn((J*A/F„„J*A) ®AM),

<t>"(A, M):   H*(HomA(J*A/F-nJ*A, M) ->Hoch" (A, M)

such that <j>n(A, M) is a split epimorphism and fa(A, M) is a split

monomorphism.

The proof follows from the foregoing discussion.

It is also possible, using our filtration, to build a subcomplex of

J*A called K*A and show that the homology of K*A is a natural

direct summand of J*A. We set (K*A)n = (F._mJ*A)n if n = mj + i,

\¿i¿j. Then the proof that A"*^4 is a complex is routine and the

foregoing discussion obtains for us the following theorem.

3.13. Theorem. Let k, A, j and M be as before. Then there exist

natural transformations

fa(A, M):    HochnU, M) ->HniiJ*A/K*A) ®A M),

faiA, M):   77»(Honu (7*^4/^*4, M)) ^Hoch"(^, M)

such that fa,iA, M) is a split epimorphism and faiA, M) is a split

monomorphism.
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