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ORDERED POWER ASSOCIATIVE GROUPOIDS

DESMOND A. ROBBIE

Abstract. Compact, connected, totally ordered, (Hausdorff)

topological groupoids, with restrictions on their sets of idempotents

and with varying degrees of power associativity assumed, are ex-

amined. The paper evolves from the author's example of such a

groupoid which has only two idempotents (a zero for least element,

and an identity for greatest element), a compact neighborhood of

the greatest element consisting of power associative elements,

and which is not isomorphic to either the real thread or the nil

thread. Another example given has a zero for least element, an

idempotent for greatest element, and no other idempotents, and has

a compact neighborhood of the greatest element consisting of an

associative subgroupoid in which all products are equal to the great-

est element. Theorems are given which show that these examples,

and one other, in some sense, exhaust the possibilities.

Ordered power associated groupoids have been considered by—among

many others—J. Aczel [1], L. Fuchs [2], K. H. Hofmann [4], P. S.

Mostert [7], and R. J. Warne [10]. We shall provide an example which

complements some work of Mostert, and a result which improves some-

what a result given by Warne. Thanks are due to Professors Hofmann

and Mostert who read the original draft and made detailed suggestions

for improvement, and also to the referee who suggested major improve-

ments. Due to their help we are able to give a more complete account than

originally envisaged.

The direction of Professor A. D. Wallace during this research is grate-

fully acknowledged.

A groupoid is a nonvoid Hausdorff space together with a continuous

binary operation (multiplication denoted by juxtaposition). An ordered

groupoid is the data of an ordered set together with the order topology,

in which the multiplication is continuous. An element of a groupoid

is power associative if it is contained in an associative subgroupoid. A

sect is an ordered groupoid which is compact and connected (of course

in the order topology), which has a zero for least element (Ox = xO = 0

whatever x), and an idempotent, e, for the greatest element (with 0 < e).
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(Familiarity with the structure of ordered spaces is assumed, for example,

R. L. Wilder [11], or Hocking and Young [3].) An ordered groupoid is

termed cancellative if each element except the least is known to cancel on

each side.

For reference below we note two well-known sects which are, however,

quite special in that in each case the multiplication is commutative and

associative. The first is the real interval [0, 1] with ordinary real multiplica-

tion which is often termed the real thread, and which is a cancellative sect.

The second example, often called the nil thread, is the real interval [\, 1]

with the multiplication x ° y = max {£, xy} where xy is ordinary real

multiplication. Two groupoids are isomorphic if there is a homeomor-

phism of one onto the other which is also a morphism.

We begin our analysis with three examples.

Example 1.   Take T = [0, 1], the real interval, and define

x°y = 2y, {(x,y):0 ^ x ^ \ and 0 ^ y ^ x}

U {(x,y)\\ ^ x ^ 1 and 0 ^y ^ 1 - x},

= I — x + y,     {(x, y):\ < x :£s 1 and 1 — x ^ y 5? x},

= y o x, otherwise.

We claim that this example is a sect which has an identity for the greatest

element, no other idempotents, and has a neighborhood of the identity

containing only power associative elements. Also, it is clearly not iso-

morphic to the real thread or the nil thread. The establishment of these

claims is left to the reader but we note that the induction part of the

argument, while quite easy, is a little unusual. Each element x which is in

the interval [£, 1] is power associative and this is proved by using that,

for such elements, x ° x = I.

Example 2. Take the usual real interval [0, 1] with the operation of

geometric mean.

We claim that this is a sect in which all elements are power associative,

in fact idempotent, which is cancellative, commutative, and which

satisfies the condition of mediality ((ab)(cd) = (ac)(bd)). We are indebted

to Professor K. N. Sigmon for pointing out that this well-known sect has

all these properties since at first we had a much more complicated looking

example. (Of course all such sects are isomorphic.) (See [8] for our

original example.)

These examples serve to illustrate that in a sect we need more than a

neighborhood of power associative elements about the maximal idem-

potent to cut down pathology, and that on the other hand we need a

restriction on the set of idempotents.
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We give our remaining example at this point.

Example 3.  Take T = [0, 1], the usual real interval, and define

xoy = 2y,        {(x, y):0 ^ x ^ 1 and 0 ^ y ^ min {x, J}},

= 1, {(x,y):^^x^ 1 andi^j^x},

= _y o x, otherwise.

It is clear that T is a sect with only two idempotents and that the set

of elements greater than or equal to J and less than or equal to 1 form

an associative subgroupoid in which the product of any two elements is 1.

This example is important in relation to Theorem 2 below.

Before giving the next result we remind the reader that we do not assume

that multiplication preserves order. The result was suggested to us by

Professor K. H. Hofmann after looking at Examples 1 and 2 above and

Corollary 1.2 below. He also gave much of the proof although we had

also progressed along the same path.

Theorem 1 [K. H. H.]. Given a sect T in which all elements are power

associative, then, for each element t in T, there are the following possibilities:

(a) t is an idempotent, or

(b) t is an interior point of a closed interval semigroup which is isomorphic

to either the real thread or the nil thread.

Proof. Since the continuous image of a connected set is connected,

and all power maps take the least element 0 to 0 and the greatest element

e to e, and since the only connected sets are intervals, we have that all

power maps take the sect onto itself. Thus, the sect is divisible. Now we

do not know that roots are unique but we do know that the set of nth

roots of an element x, for a fixed natural number n, is a closed set, and so

has a least element. We denote this least element by x1/n.

It is tedious but easy to show (see Robbie [8]) that if we define tvlq to be

(7i/9)!> for positive integers p and q, then the map /: ß+ —>- T, given by

plq i—> tvlq, is a well-defined algebraic morphism, and, of course,/(l) = t.

The proof requires again the use of the zero and the order properties, and

connectivity properties of our space.

For the next step let

C=n{/((0, r])*:0<r}.

Then C is the intersection of a tower of nonempty compact sets and so is

nonempty. Moreover, each of the sets, being the closure of a commutative

and associative set, will be commutative and associative as well, and so

then C will have these properties also. We note next that by juggling

backwards and forwards with the morphism / we can show that CC <= C

so that C is a compact abelian semigroup. Again by using a similar
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procedure it can be shown that CC = C and that C has only one idempo-

tent. Then, by a result of Koch and Wallace [6], C is a group. Still again

it is easily seen that C is divisible and so must be a connected group. Since

a topological group is homogeneous in its topology, C must be a singleton.

Denoting this single element by c we have, of course, that c2 = c. Then

/may be extended to Q+ u {0} by f(0) = c and this extension is continuous

at each point (see Hofmann [4, p. 21]). Next, considering/as a function

from Q+ u {0} into (im/)*, since (im/)* is a compact abelian semigroup,

it is well known that/ may be extended continuously to a morphism from

all nonnegative reals into (im/)*. Thus, (im/)* is a solenoidal sub-

semigroup of a totally ordered semigroup and so is isomorphic to the real

thread, the nil thread, or a point.

Corollary 1.1. With the hypotheses of Theorem 1 and the additional

hypothesis that there are only two idempotents, then T must be isomorphic

to either the real thread, or the nil thread.

Proof. Immediate.

Corollary 1.2. If T is a cancellative sect in which all elements are

power associative and in which the maximal idempotent, e, is isolated in

the set of idempotents, then T is isomorphic to the real thread.

Proof. (See Robbie [8] for a direct proof by a simple order argument.)

T, by Theorem 1 and the cancellative property, must contain a non-

degenerate semigroup isomorphic to the real thread, one end of which is

the maximal idempotent e. Now e cannot be the zero for that semigroup

(again due to the cancellation property). Finally, again by the cancellation

property, the zero for this semigroup must be the zero of T.

The referee suggested another theorem which after some further modi-

fication became the next result. It should be noted also that Mostert [7],

produced similar working to that necessary to prove part of the theorem,

so we have omitted most of the details for that and concentrated on the

newer part. Professor Hofmann had earlier suggested that a similar

result might be true.

Theorem 2 [Referee and author]. If T is a sect with just two

idempotents, and, if there is a neighborhood of the maximal idempotent e

consisting of power associative elements, then,

(a) either e ■ V = V ■ e = e for some neighborhood of e, or e is an

identity over some neighborhood of e, and

(b) either e is a cluster point of elements t with (te)2 = e, or T is the real

thread, or the nil thread.
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Proof. It is an elementary exercise in the connectedness properties of

ordered spaces that either all elements, t, strictly between 0 and e have

the property t2 < /, or they all have the property t2 > /. In case t2 < /,

consider a net {ta} of power associative elements converging monotoni-

cally to e. (This can be obtained if e is merely a cluster point of power

associative elements, but the extra hypothesis is needed in the case

t2 > t to get our result.) Choose 0 < a < e. Now 0 must be the idempo-

tent in the closure of the set of powers of T for each t in the net. Thus for

each a, there is an integer «(a) such that xk ^ a, for 1 ^ k n(ct), but

xnix)+i a Then Dy taking the index set of the net with the discrete

topology, and choosing a particular point, q, of the Stone-Cech com-

pactification of the net, we may define a one parameter semigroup in our

groupoid by a(s) = fs(q), where /,(•) is the continuous extension to the

Stone-Cech compactification of the net, of the function denned on the

net by/s(oc) = xlsnMl, where [^n(a)] denotes the greatest integer function.

The details of this type of argument are well known (see Hofmann and

Mostert [5]). We remark that once this is established then the proof goes

again similarly to that outlined in the proof of Theorem 1. We note here

that the Koch and Wallace result mentioned earlier seems fundamental

for these types of arguments. We end up then, in this case, with either the

real thread or the nil thread.

If now we assume that t2 > t for all t, then, for any power associative t,

the idempotent in the closure of the powers must be e. Then also e

associates with t and so e is the identity for te. Now te must then be power

associative and so since (te)2™ approaches e, then we obtain that the

closure of the set of powers of te is either a group of order 2m for some m

or it is a 2-adic group. (The topology of a topological group is homo-

geneous.) If there are not elements, t, arbitrarily close to e with the

property (te)2 = e, but there is a neighborhood about e with only power

associative elements, then, choosing t < e sufficiently close to e so that

te is also power associative, we cannot have (te)3 = te, since this would

give ((te)2)2 = (te)2 which in turn would mean (te)2 = e, a contradiction.

So either (te)3 > te for all / < e in that neighborhood, or (te)3 < te for all

those /. The second case is not possible since it would lead to the conclusion

that 0 belongs to the closure of the set of powers of te, but this set is

included in the closure of the set of powers of /, because e belongs to the

latter set which is a semigroup. So always if t « e) is in a certain neigh-

borhood of e, then (te)3 > te. By induction, it may be shown that (te)n >

te for each n and so this means that te is the least element of the group

about te which we are discussing. Then, due to the nature of the group,

it is uniquely three divisible and so choosing the cube root, r, of te, we
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have by connectivity that r = ge for some t ^ g < e. Then (ge)3 >

ge ^ te, which is a contradiction. Thus if t2 > t for all elements between

0 and e, and there is a neighborhood of e consisting of power associative

elements, then e is a cluster point for elements, /, with the property

(te)2 = e.

Finally we note that the next result does not seem readily to admit to an

approach directly similar to those given above but comes from a more

involved version of Warne's [10] work combined with work similar to

that of Aczel [1]. The proof is omitted as it can be obtained from the

author's dissertation [8]. We note however that Professor K. N. Sigmon

has suggested the possibility of obtaining it from Corollary 1.2 by applying

a direct limit type of argument similar to that used in his paper [9].

Theorem 3. If T is a cancellative compact connected ordered power

associative groupoid (all elements power associative), with a zero for the

least element, and a nonidempotent for the greatest element, and if as well

the squaring function is a morphism, then T is isomorphic to [0, J] under

ordinary real multiplication.
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