MINIMAL SURFACES IN S^m WITH GAUSS CURVATURE ≤ 0

BANG-YEN CHEN1

ABSTRACT. Closed minimal surfaces in a unit *m*-sphere S^m with Gauss curvature $K \leq 0$ are considered.

- 1. **Introduction.** Recently, S. S. Chern, M. do Carmo, and S. Kobayashi [2] studied the *n*-dimensional submanifolds of a unit *m*-sphere S^m with scalar curvature $\geq n(n-1) n(m-n)/(2m-2n-1)$. In particular, they proved that the only closed minimal surfaces of S^m with Gauss curvature $K \geq (2m-6)/(2m-5)$ are the following surfaces:
 - (i) equatorial sphere of S^3 ,
 - (ii) Clifford torus in S^3 , and
 - (iii) Veronese surface in S^4 .

The main purpose of this paper is to study the closed minimal surfaces of S^m with Gauss curvature $K \leq 0$.

- 2. **Preliminaries.**² Let M be a surface in a unit m-sphere S^m . We choose a local field of orthonormal frames e_1, \dots, e_m in S^m such that, restricted to M, the vectors e_1 , e_2 are tangent to M (and, consequently, e_3, \dots, e_m are normal to M). With respect to the frame field of S^m chosen above, let $\omega_1, \dots, \omega_m$ be the field of dual frames. Then the structure equations of S^m are given by
- (1) $d\omega_A = \sum \omega_B \wedge \omega_{BA}, \quad \omega_{AB} + \omega_{BA} = 0,$
- (2) $d\omega_{AB} = \sum \omega_{AC} \wedge \omega_{CB} \omega_{A} \wedge \omega_{B}, \quad A, B, C = 1, \dots, m.$

We restrict these forms to M. Then

(3)
$$\omega_r = 0, \quad r, s, t = 3, \cdots, m.$$

Since $0 = d\omega_r = \omega_1 \wedge \omega_{1r} + \omega_2 \wedge \omega_{2r}$, by Cartan's lemma we may write

(4)
$$\omega_{ir} = h_{i1}^r \omega_1 + h_{i2}^r \omega_2, \quad h_{ij}^r = h_{ji}^r, \quad i, j = 1, 2.$$

Received by the editors February 8, 1971.

AMS 1970 subject classifications. Primary 53A10, 53A05; Secondary 53C40.

Key words and phrases. Minimal surfaces, Gauss curvature, flat surfaces, Clifford torus, minimal direction, Lipschitz-Killing curvature.

¹ This work was supported in part by NSF Grant GU-2648.

² Manifolds, mappings, functions, and other geometric objects are assumed to be differentiable and of class C^{∞} .

From these we obtain

(5)
$$d\omega_i = \sum \omega_i \wedge \omega_{ii},$$

(6)
$$d\omega_{12} = -\left\{1 + \sum_{r=3}^{m} \det\left(h_{ij}^{r}\right)\right\} \omega_{1} \wedge \omega_{2},$$

(7)
$$d\omega_{ir} = \sum \omega_{ij} \wedge \omega_{jr} + \sum \omega_{is} \wedge \omega_{sr}.$$

Put

(8)
$$H = \left(\frac{1}{2}\right) \sum_{r=3}^{m} (h_{11}^{r} + h_{22}^{r}) e_{r}.$$

Then H is a well-defined normal vector field over M, and is called the mean curvature vector of M in S^m . If H = 0 identically on M, then M is called a minimal surface of S^m . The Gauss curvature K of M is given by

(9)
$$K = 1 + \sum_{r=3}^{m} \det(h_{ij}^{r}).$$

Let $e = \sum_{r=3}^{m} \cos \theta_r e_r$ be a unit normal vector at p; then the Lipschitz-Killing curvature G(p, e) with respect to e is given by

(10)
$$G(p, e) = \left(\sum_{r} \cos \theta_r h_{11}^r\right) \left(\sum_{s} \cos \theta_s h_{22}^s\right) - \left(\sum_{t} \cos \theta_t h_{12}^t\right)^2.$$

Let ∇' be the covariant differentiation on S^m , and η be a normal vector field over M in S^m . If the covariant differentiation $\nabla' \eta$ has no normal component, then η is said to be *parallel in the normal bundle*. A unit normal vector field \bar{e} over M is called a *minimal direction* if the Lipschitz-Killing curvature with respect to \bar{e} is minimal at every point $p \in M$, i.e. $G(p, \bar{e}) = \min \{G(p, e) : e \text{ unit normal vector at } p\}$, for all $p \in M$.

THEOREM 1. Let M be a closed minimal surface of a unit m-sphere S^m with Gauss curvature $K \leq 0$. If there exists a unit normal vector field \bar{e} over M such that \bar{e} is parallel in the normal bundle and the Lipschitz-Killing curvature with respect to \bar{e} , G(p,e), is nowhere zero, then M is a Clifford torus in a unit 3-sphere $S^3 \subset S^m$.

THEOREM 2. Let M be a closed minimal surface of a unit m-sphere with Gauss curvature $K \leq 0$. If there exists a minimal direction which is parallel in the normal bundle, then M is a Clifford torus in a unit 3-sphere $S^3 \subset S^m$.

From Theorem 2 and the result of Chern-doCarmo-Kobayashi, we obtain

COROLLARY ([1], [4]). Let M be a closed minimal surface of S^3 . If the Gauss curvature of M does not change its sign, then M is either an equatorial sphere or a Clifford torus.

3. **Proof of Theorem 1.** Suppose that M is a closed minimal surface of a unit m-sphere S^m with Gauss curvature $K \leq 0$. If there exists a unit normal vector field \bar{e} over M such that \bar{e} is parallel in the normal bundle and the Lipschitz-Killing curvature with respect to \bar{e} is nowhere zero. We consider only the orthonormal frames $(p, e_1, e_2, e_3, \cdots, e_m)$ in B such that $e_m = \bar{e}$ and e_1 , e_2 are in the principal directions of e_m . Since M is minimal in S^m , the principal curvatures k_1 , k_2 in the direction of e_m are given in the forms:

(11)
$$k_1 = h$$
, and $k_2 = -h$.

Since the Lipschitz-Killing curvature $G(p, e_m) = -h^2 \neq 0$ is defined globally on M, we see that h is defined globally on M. Without loss of generality, we may assume that h > 0 on M. Then we have

(12)
$$\omega_{1m} = h\omega_1 \quad \text{and} \quad \omega_{2m} = -h\omega_2.$$

By taking exterior derivatives of (12) and applying (5) and (7), we obtain

(13)
$$2h \ d\omega_1 + dh \wedge \omega_1 = \sum \omega_{1r} \wedge \omega_{rm}, \\ 2h \ d\omega_2 + dh \wedge \omega_2 = -\sum \omega_{2r} \wedge \omega_{rm}.$$

Since $e_m = \bar{e}$ is parallel in the normal bundle, we have $\omega_{rm} = 0$. Thus (13) reduces to

(14)
$$2h d\omega_1 + dh \wedge \omega_1 = 0, \qquad 2h d\omega_2 + dh \wedge \omega_2 = 0.$$

From (14) we can consider local coordinates (u, v) in an open neighborhood U of a point $p \in M$ such that

(15)
$$ds^2 = E du^2 + G dv^2$$
, $\omega_1 = E^{1/2} du$, $\omega_2 = G^{1/2} dv$,

where ds^2 is the first fundamental form and E and G are local positive functions on U. From (15), equation (14) becomes

(16)
$$d(hE) \wedge du = 0, \qquad d(hG) \wedge dv = 0,$$

which shows that (hE) is a function of u, and (hG) is a function of v. By making the following coordinates transformation:

(17)
$$u' = \int (hE)^{1/2} du, \qquad v' = \int (hG)^{1/2} dv,$$

we see, from (15), that there exists a neighborhood V of each point p in M such that there exist isothermal coordinates (u, v) in V such that

(18)
$$ds^2 = f\{du^2 + dv^2\}, \qquad \omega_1 = f^{1/2} du, \quad \omega_2 = f^{1/2} dv,$$

$$hf = 1,$$

where f = f(u, v) is a positive function defined on V. It is well known that the Gauss curvature K is given by

(19)
$$K = -(1/2f)\Delta \log (f),$$

with respect to the isothermal coordinates (u, v). Hence, the condition $K \leq 0$ with hf = 1 implies $\Delta \log(h) = -\Delta \log(f) \leq 0$. From Hopf's lemma, we see that $\log (h)$ is a constant on M. Hence, the Gauss curvature K satisfies $K = (-1/2f)\Delta \log (f) = (h/2)\Delta \log (h) = 0$, identically on M. This implies that M is a closed flat minimal surface in S^m . By a result of Lawson [3], we see that M is, in fact, the Clifford torus in a unit 3-sphere $S^3 \subset S^m$. This completes the proof of the theorem.

4. Proof of Theorem 2. Since M is a minimal surface of S^m , we see that the Lipschitz-Killing curvature $G(p, e) \leq 0$ for all (p, e) in the unit normal bundle. Therefore, if \bar{e} is a minimal direction of M in S^m , then from (9) we obtain

(20)
$$G(p, \bar{e}) \le -1/(m-2) < 0$$
 on M .

Thus, by Theorem 1 and (20), we obtain Theorem 2.

REMARK. Under the assumption of Theorem 1 or 2, if we replace $K \leq 0$ by $K \geq 0$, then we can easily prove that M is either an equatorial sphere or a Clifford torus in $S^3 \subset S^m$, by showing the vanishing of the normal curvature of M in S^m .

ACKNOWLEDGEMENT. The author would like to express his hearty thanks to the referee for his many valuable suggestions on this paper.

REFERENCES

- 1. B.-Y. Chen, Minimal hypersurfaces in an m-sphere, Proc. Amer. Math. Soc. 29 (1971), 375-380.
- 2. S. S. Chern, M. do Carmo and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Felds, Springer-Verlag, New York, 1970, pp. 59-75.
- 3. H. B. Lawson, Jr., Minimal varieties in constant curvature manifolds, Thesis, Stanford University, Stanford, Calif., 1969.
- 4. ——, Complete minimal surfaces in S³, Ann. of Math. (2) 92 (1970), 335-374.
 5. ——, The global behavior of minimal surfaces in Sⁿ, Ann. of Math. (2) 92 (1970), 224-237.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823