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SEMI-LOCAL-CONNECTEDNESS AND CUT
POINTS IN METRIC CONTINUA

E. D. SHIRLEY

Abstract. In the first section of this paper, the notion of a

space being rational at a point is generalized to what is here called

quasi-rational at a point, ft is shown that a compact metric con-

tinuum which is quasi-rational at each point of a dense subset of

an open set is both connected im kleinen and semi-locally-connected

on a dense subset of that open set. In the second section a Gs set is

constructed such that every point in the Gd at which the space is not

semi-locally-connected is a cut point. A condition is given for this

Gs set to be dense. This condition, in addition to requiring that the

space be not semi-locally-connected at any point of a dense Gä set

gives a sufficient condition for the space to contain a Gd set of cut

points. The condition generalizes that given by Grace.

1. Throughout this paper M will be taken to be a compact metric con-

tinuum. Many of the lemmas, however, can be proven with less hypotheses.

Lemma 2, for example, requires only that the sets Px (defined below) be

subcontinua of M. Compact Hausdorff is sufficient for this to happen [4].

Let X, y, and z be points of M (not necessarily distinct). The point x

cuts between y and z in M when every subcontinuum of M which contains

both y and z must also contain x. The point x is a cut point of M when x

cuts between two points distinct from x. M is said to be aposyndetic

(semi-locally-connected) at x with respect to y if and only if there is a

subcontinuum of M with x (y) in its interior that does not contain y (x).

M is aposyndetic (semi-locally-connected) at x when it is aposyndetic

(semi-locally-connected) at x with respect to every other point. Finally,

M is connected im kleinen at x when each neighborhood of x contains a

closed neighborhood of x which is also connected. One should note that

when M is connected im kleinen at a point, it is also aposyndetic at that

point. For x e M, Px denotes {y e M | M is not aposyndetic at y with

respect to x), and for T £ M, P'T denotes (~j {rY | P s 7/° and >7 is a
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subcontinuum of M}. Clearly M is semi-locally-connected at x if and

only if Px = {x}. As noted above, Px is a subcontinuum of M.

Lemma 1.1. If T is a subcontinuum of M and x is a point of M, then

xeP'T if and only ifPx n T 5^ 0.

Proof. Suppose x e P'T. If Px n T = 0, then M is aposyndetic at

every point of T with respect to x. By the definition of aposyndetic and

the compactness of T we see that T can be covered by the interior of a

finite number of continua Ax, • • • , An, where each Ai meets T and does

not contain x. Now T u UiLi Ai is a subcontinuum of M containing P

in its interior, and hence x eP'T £ F u UjLi Since x ^ we have

x e T, and so x e Px n F = 0. This contradiction shows Px r\ T ^ 0.

Conversely, suppose that for some x e M,PX r\ T ^ 0, say j e Px r\ T.

Let T H° where /Y is a subcontinuum of M. Then y e H". Since y £ P,.,

A/ is not aposyndetic at y- with respect to x. It follows that x e H. Thus

xeP^. □

Lemma 1.2. If T is a subcontinuum of M, then for z e {P'fif anfl* _y e

M — T we have z e Pv implies y e Pz.

Proof. Suppose y $PZ and z e P„. Then there is a continuum H

containing y in its interior which does not contain z. Let U be an open

neighborhood of y in H° n (M — P), and let L be the component of

M — U containing P. Suppose x £ (M — H) C\ P'T. Then in particular

Px C\T 0. If x $ L, then A is a proper subset of P^ u L. Hence

P0r\Ui£ 0. Let j £ Px u £/, then 5 £ /7° and thus x £ H. With this

contradiction we conclude that (M — //) n Py £ L. Thus z £ (M — rY) n

(Pt)° £ P° and, of course, z eP„. This implies y e L which contradicts

the fact that y e U <^ M — L. □

Lemma 1.3. Let V be an open point set of M. M is semi-locally-connected

on a dense subset of V if and only if for each open point set W in V, there

is a finite number of continua covering d W but not all of W.

Proof. That this condition is necessary is immediate, for if W is an

open point set of V, then there is a point x in IP at which M is semi-

locally-connected. Thus M is aposyndetic at each point of d\V with

respect to x. Since dW'\% compact we can conclude there is a finite number

of continua covering 9 W with their interior but not containing x.

Conversely let W be any open point set of V. We will find a point

x £ W at which M is semi-locally-connected. By the hypothesis we can



1972] SEMI-LOCAL-CONNECTEDNESS AND CUT POINTS 293

choose open point sets W( and continua H{, ■ • • , Hln. such that

(1) wx £ W,
(2) dWt £ U^i/Yj,
(3) Wi+X £      - U^ix H),
(4) x,y e W{ implies d(x, y) ^ iß.

Let x £ P| Wf. For j # x, choose k such that y N2/k(x) (Nr(x) is

the open ball with center x and radius r). Then x e (Wk — U"=ii #/) = £/*,

and y e M — D. Now each component of M — D meets dU which is in

U"ii Thus M — U has only a finite number of components (each

component of M — U contains at least one Hk. Since y e M — 0, y is in

the interior of the component of M — U containing y. Since this com-

ponent does not contain x, M is semi-locally-connected at x with respect

to y. It follows that M is semi-locally-connected at x which completes

the proof. □

M is said to be quasi-rational at x if and only if for each open neigh-

borhood W of x there is an open neighborhood U of x in W such that

W — U contains a closed set which is a countable union of continua

and which separates U from M — W.

Lemma 1.4. If M is quasi-rational on a dense subset of an open point

set V of M, then M is connected im kleinen on a dense Subset of V.

Proof. Let W be an open point set in V. We will show W contains a

point at which M is connected im kleinen. W contains a point at which

M is quasi-rational. Thus there is an open point set U and continua

Tx, T2, • ■ ■ such that U Tt S W — U is closed and separates U from

M — W. Since each component of M — U 7*4 meets some Tt, we see U

is covered by a countable number of continua in W. One of these con-

tinua must contain an open subset of U. The above proof procedure allows

us to verify that there are continua Hx, H2, • • • in W such that for each

positive integer i, Hi+X £ H° and the diameter of Ht is ^ 1//. Let x e fj

Then since x e H° for each i and for each neighborhood G of x there

exists an integer i such that /Y, is contained in G, M is connected im

kleinen at x. □

Theorem 1.1. If M is quasi-rational on a dense subset of an open point

set V then M is semi-locally-connected on a dense subset of V.

Proof. Suppose not. By Lemma 1.3 there is an open point set W

in V such that if dW is covered by a finite number of continua, then they

cover all of W. This implies in particular that Px n dW ^ 0 for all

x £ W. Now let U be an open point set in W which is separated from

M — W by a countable union of continua, U T(, which is a closed

subset of W — U. Since Px is connected and Px o d W ^ 0 for x £ W,

for x £ U we have Px C\ \J T{ j£ 0. Let Ki — {xeU\Pxr\Tij^ 0}.
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It is easily seen that Kf is a closed subset of U (relative topology) for

each i [4, Theorem 1]. Since the A/s form a countable cover of U, it

follows that for some i, K\ ^ 0 ■ By Lemma 1.1 we see K? £ p'T_ n

(M — TX By Lemma 1.4 there is a point x e U n (P't)° at which M is

aposyndetic. Since Px n dW ^ 0 and Px is connected, there is a point

j e U r\ (P'T)° r\Px different from x. By Lemma 1.2, xePv which

contradicts the fact that M is aposyndetic at x with respect to y. □

2. In the following a Gs set is constructed such that every point in the

Gs at which M is not semi-locally-connected is a cut point. Then it is

proven that under certain conditions this G3 is dense. In this section y

is a fixed point of M. C(x, i) is used to denote the component of

M — Nyn'x) containing y, and when it is used it is assumed that y e

M — Nlfi(x). Let Gn = {z e M \ there is a point x e M and integers i,j

such that d(x, z) < l/n, i > n, and C(x, i) £ C(z,;)0} and let G = f| Gn-

Lemma 2.1.   Gn is an open set for each n.

Proof. Let z e Gn. There is a point x of M and integers i, j such that

tf*(x, z) < l/n, and C(x, /) £ C(z,y')°. Nl/n(x) n iV1/3(z) is a neighborhood

of z. For i e N1/n(x) n Ni/jiz) we have ö"(x, s) < l/n, and we can find a

/V so that N1/k(s) £ /V1/3(z). Hence C(z,/> £ C(s, /c). It follows that

C(s, i) c C(z,;)° £ C(i, /c)°, and thus s e G„.. □

Lemma 2.2. If z e G and z is not a cut point, then M is semi-locally-

connected at z.

Proof. Suppose z e G is not a cut point. For each positive integer n

there exists a point xn and integers in,jn such that d(xn, z) < l/n, in > n

and C(xn, in) £ C(z,y'„)°. Now C(z,jn) is a continuum not containing

z, so Pz £ n„ (M - C(z,;„))° c n„ (M - C(x„., /„)). Suppose j e

On (^ — C(x„, /'„)) and i^z. Let // be a subcontinuum of M joining

s to y and missing z. Choose k large enough so that N1/k(z) C\ H = 0.

Then /Y £ C(z, /c). Also choose r> large enough so that N1/ip(xP) £

N1/k(z). Then C(z, /c) £ C(xp, ip) and hence s e C(Xj,, i,,). This contra-

diction shows f) (M — C(A'„, /„)) £ {z}. Thus Px £ {z} and M is semi-

locally-connected at z. □

Theorem 2.1. Le? V he an open set in M. Suppose for all continua T

containing y we have that (P't)° n (K — T) = 0,       FnGij flewe in V.

Proof. Suppose W £ F — G is an open point set of M. Let x, 6 W.

Choose «i > 1 such that M1ftIx1) £ ^(with no loss of generality y £ W).

If there is an x e Aj/.^fo) such that, for some/, C(xu /',) £ C(x,y')° then
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we let x2 = x and i2 = max (j, 2, k) where k is such that

KiJx) £ NUh(Xl).

Suppose for each positive integer n there exists a point x„ and an integer

i„ > n such that

C(x„, i„) £ C(x ,)°   and   /V1/in+1(xn+1) £ N1/iK(x„).

Let z e pi A7,/,- (x„). Then xx, x2, x3, ■ • • converges to z. Since z e

Ar1/in+i(x„+1), for each positive integer n there is ay"„ such that N1/in(z) £

^i/i„+1(^+i)- Hence we conclude that C(x„, /„) £ C(x„+1, j„+1)° £

C(z,j„)°. Since rf(xn, z) < 1/« it follows that z e Gn for all n. But this

says z e G n W. We conclude that there must be an n such that x e

/V1/iB(xJ implies C(xn, Q $ C(x,/)° for all J. Let T = C(xn, /„). T is a

subcontinuum of M containing y. Let s e N1/t (xj and T £ i/° where i/

is a subcontinuum of M. If 5 ^ i7, then there is a / such that Nlfj(s) £

M - H. Hence // £ C(i,/). This says C(xn, in) = r £ H° £ C(j,y)°

which is a contradiction. Therefore Afx^ (x„) £ if. It follows that

N1/in(xn) £ Ft n (K — T), contradicting the fact that

(PTf C\ (V — T) = 0. □

Corollary 2.1. If M is not semi-locally-connected at any point of a

dense Gs subset of an open point set V, and if for any subcontinuum T of

M containing y we have (P't)° o (K — T) = 0. Then V contains a dense

Gd set of cut points.

Corollary 2.2 (Grace [2]). Suppose V is an open set of M which

contains a dense Gs set G such that given any point x in G, M is locally

peripherally aposyndetic at x and M is not semi-locally-connected at x.

Then V contains a dense Gö set of cut points.

(M is locally peripherally aposyndetic at x when for x e U, U open,

there is an open set W such that x e W £ U and M is aposyndetic at x

with respect to each point of dW.)

Proof. If V does not contain a dense Gd set of cut points, then by

Corollary 2.1 there is a continuum T such that (P'T)° n (V — T)j± 0.

Let x e (P'T)° n (V — T) be a point at which M is both locally peripherally

aposyndetic and not semi-locally-connected. Since M is not semi-locally-

connected at x, there is an open set M^such that x e W £ (P't)° C\ (V — T)

and Px n (M — W) # 0. Let U be open such that x e U £ W and M

is aposyndetic at x with respect to each point of dU. Since Px is a con-

tinuum there is a z e Px C\ dU. By Lemma 1.2, x ePz. But this says M is

not aposyndetic at x with respect to z and since zedll we have a con-

tradiction. □
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Jones [4, Theorem 15] has shown that a compact metric continuum M

which is not semi-locally-connected at any of its points contains a dense

set of cut points. Grace [1] posed the question whether a space M has a

G6 set of cut points. In particular, this would imply that the cardinality of

the collection of cut points is c. Hagopian [3, Theorem 4] has shown that

the latter must happen: If a compact metric continuum M is not semi-

locally-connected at any point of a Gs subset which is dense in M then

the set of cut points in each open point set has cardinality c.

Suppose V is open in M and M is not semi-locally-connected at any

point of a dense Gd subset K of V. Let Vx= V n (U {P't - T \ T is a

subcontinuum of M}) and let V2 = (V - VJ3. By Corollary 2.1, V2

contains a dense G6 set of cut points. Although we cannot show that Vx

contains a dense Gs set of cut points (which would answer Grace's

question), we can strengthen Hagopian's result by proving that when

^ ^ 0, Vx contains a nondegenerate continuum whose points are cut

points. Assume K, ^ 0.

Theorem 2.2. Vx contains a dense Gs set J such that for each x eJ

there is a nondegenerate subcontinuum H of M containing x such that each

point of H cuts x from y.

Proof. As a special case of Grace's Theorem 2 [2] we have M con-

tains a dense Gs set / such that if x e I n Pz then z cuts x from y. Let

J = Vx C\I. For x e J there is a subcontinuum T of M such that x e

P't — T. Let H be any nondegenerate subcontinuum of Px in P't containing

x. By Lemma 1.2, z e H implies x £ Pz. Since x e I, z cuts x from y.

By choosing a nondegenerate subcontinuum K of H (the H of Theorem

2.2) which is contained in V — {x, y}, we have that each point of A is a

cut point.
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