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FINITE AUTOMORPHIC ALGEBRAS OVER GF(2)

FLETCHER GROSS!

ABSTRACT. If A is a finite nonassociative algebra over GF(2)
and G is a group of automorphisms of 4 such that G transitively
permutes the nonzero elements of A, then it is shown that either
A% = 0 or the nonzero elements of 4 form a quasi-group under
multiplication. Under the additional hypothesis that G is solvable,
the algebra A is completely determined.

All algebras considered in this paper are nonassociative. Shult [5]
proved that if 4 is a finite automorphic algebra over GF(g) and g > 2,
then either 4% = 0 or 4 is a quasi division algebra. Here an automorphic
algebra is one in which the automorphisms of the algebra transitively
permute the one-dimensional subspaces. A quasi division algebra is an
algebra in which the nonzero elements form a quasi-group under multi-
plication. One of the purposes of the present paper is to show that the
restriction ¢ > 2 in Shult’s Theorem is unnecessary. Actually a great
deal of Shult’s argument still applies when ¢ = 2. Where Shult’s proof
breaks down for ¢ = 2, the Feit-Thompson Theorem, a theorem on
solvable transitive linear groups, and a number theoretic result of Shaw
[4] combine to finish the proof.

If 4 is a finite automorphic algebra over GF(q), ¢ > 2, and 42 # 0,
then Shult [6] showed that 4 = GF(q). For ¢ = 2, we prove the weaker
result that if 4 is a finite algebra over GF(2), 4% £ 0, and G is a solvable
group of automorphisms of 4 such that G transitively permutes the non-
zero elements of A, then A is isomorphic to the algebra 4(n, u) for some
positive integer n and some nonzero element u in GF(2"). Kostrikin [2]
obtained the same conclusion under the assumption that G is cyclic.

The algebra A(n, u) referred to above is defined as follows: Let K =
GF(2") and let u be a fixed nonzero element of K. For x and y in K,
define [x, y] by the rule [x, y] = u(xy)*"". Then A(n, w) is the algebra
over GF(2) obtained from K by replacing multiplication by [ , ]. A(n, u)
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is an automorphic algebra since if 4 is any nonzero element of K, then
the mapping x — Ax for all x € K is an automorphism of A(n, ). (With
1 =1, the algebras A(n, u) also occur as examples in [6].)

Before proceeding to our main theorems, we require some preliminary
results.

LemMMA 1. If n, r, and a are nonnegative integers such that 2" =
(mod r), rn =0 (mod 2" — 1), and 2* = 1 (mod r), then a = 0 (mod n).

This is proved by Shaw [4, Lemma 4].

LeMMA 2. If n, r, a, b, ¢, and d are nonnegative integers such that
2" =1 (modr), rn =0 (mod 2" — 1), and 2% + 2° = 2¢ 4+ 2% (mod r),
thena + b = ¢ + d (mod n).

Proor. This is certainly true if the sets {a, b} and {c, d} are the same
modulo a. If they are not, then it follows from [4, Lemma 5] that n = 6.
In this case, the lemma is established by a straightforward examination
of the possible values (mod n) of a, b, ¢, and d.

LemMA 3. Let K = GF(2") and for 0 # A € K, let T, be the mapping of
K defined by xT, = Ax. Let R be the mapping xR = x% Let T be the
group consisting of all T, for 0 # A € K, let U be the cyclic group generated
by R, and let L = TU. Next suppose u is a fixed nonzero element of K and
define [x, y] for x and y in K by the rule [x, y] = ,u(xy)2"_l. If Se L and
ST, = T,S, then [xS, yS] = [x, y]S for all x and y in K.

Proor. Let C be the subgroup of L consisting of those elements of L
which commute with T;. Clearly C contains T and it is easily verified that
[x, y]S = [xS, yS] for all S e T. Thus, to prove the lemma it suffices to
show that [x, y]S = [xS, yS]1if Se C N U. If Se C N U, then we must
have uS = u. But then, since S is an automorphism of K, the desired
result follows immediately.

Lemma 4. Let K, T,, and T have the same meaning as in Lemma 3.
Suppose that H is a subgroup of T such that |T[H| divides n. If R is any
nonzero homomorphism of the additive group of K into itself such that R
commutes with all elements of H, then Re T.

Proor. Since R # 0, there is an element x in K such that xR s 0.
Let A = x"Y(xR). Then (R — T;) commutes with all elements of H and
has nonzero kernel. By Lemma 1, H acts irreducibly on the additive
group of K. Schur’s Lemma now implies that R — T; = 0. Therefore
ReT.

THEOREM 1. Let A be a finite algebra over GF(2) and assume that B
is a left ideal in A such that B* = 0. Assume that for each x € A, the linear
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transformation L, of B defined by L,y = xy for y € B is a nilpotent trans-
formation. Suppose further that G is a group of automorphisms of A such
that B is G-invariant and G acts transitively on the nonzero elements of B.
Then AB = 0.

ProOF. This corresponds to Theorem 4 of [5]. As in the proof of that
theorem we may assume that there is a minimal counterexample A4
satisfying (in addition to the hypothesis of the theorem) the following:

(i) As a G-module, 4 is the direct sum of the G-invariant subspaces
W and B.

(i) W?= B>= BW =0 % WB.

Proceeding exactly as in [4, steps (a) through (d)] we find that

(a) If we Wand wB =0, then w = 0.

(b) W is an irreducible G-module.

(c) Bis a faithful G-module.

(d) G has odd order.

It follows from (d) and the Feit-Thompson Theorem [1] that G is
solvable. If |B| = 2", then Theorem 19.9 of [3] now implies that G has a
normal cyclic subgroup C of order r where 2" =1 (modr) and rn =0
(mod 2" — 1). By Lemma 1, C acts irreducibly on B. As in step (h) of
Shult’s proof, we conclude that C acts in a fixed-point-free manner on W.
Next, Shult’s proof of step (i) is applicable and so there are nonnegative
integers a,, a,, by, b, such that a, # a, (mod n), b, 3£ b, (mod n), but
2% 4 Qbrez = 292 4 Dbetd1 (mod r). Lemma 2 now yields a; + b; + a, =
a, + b, + a, (mod n) which contradicts b, # b, (mod #). Thus Theorem 1
is proved.

THEOREM 2. If A is a finite automorphic algebra over GF(2), then either
A% = 0 or A is a quasi division algebra.

Proor. This is derived from Theorem 1 by exactly the same process
Shult uses to derive his Theorem 1 from his Theorem 4.

For the rest of this paper, with the exception of Theorem 4, we make
the following assumptions: A is a finite algebra over GF(2), 4% # 0, and
G is a (not necessarily solvable) group of automorphisms of 4 which acts
transitively on the nonzero elements of 4. If x and y belong to 4, the
product of x and y will be denoted by [x, y]. S will denote the mapping
x — [x, x] for x € A. C will be the set of all homomorphisms of 4 into
itself where A is considered as a G-module. By Schur’s Lemma, C is a
division ring. Since C is finite, C is a field of characteristic 2. Finally let
|A| = 2.

LEMMA 5. [x,y] = [y, x]forall xandyin A. If T € C, then [x, yT] =
[xT, y].
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PrOOF. Suppose T € C and define x o y by the rule x o y = [xT, y] +
[yT, x]. Using this operation instead of multiplication we obtain a new
algebra B. If Re G, then (x o y)R = (xR) o (yR) for all x and y in A.
Hence B is an automorphic algebra. But x o x = 0 for all x since we are
working over a field of characteristic 2. It now follows from Theorem 2
that xoy =0 for all x and y. Thus [xT,y] = [yT, x]. With T =1,
we obtain [x, y] = [y, x] and the lemma follows.

COROLLARY. SeC.

PROOF. (x + )S=xS+ yS+ [x,y] + [y, x] = xS 4+ yS. Clearly.
(xS)T = (xT)S for all Te G.

Lemma 6. If TeC, then [x,y]T = [xT, yT] for all x and y in A.
Thus the nonzero members of C are automorphisms of A as an algebra.

PrOOF. Define x oy by the rule x oy = [x, yIT + [xT, yT]. Using
this instead of multiplication, we obtain a new algebra B. B is an automor-
phic algebra since (x o y)R = (xR) o (yR) for all Re G. Now xox =
xST + xTS. But, since Cis a field, ST = TS. Thus x o x = 0. Theorem 2
implies that x o y = 0 for all x and y in 4. Therefore, Lemma 6 is proved.

THEOREM 3. If G is solvable, then A is isomorphic to A(n, u) for some
nonzero element p in GF(2").

Proor. If G is solvable, then we may identify the additive group of 4
with GF(2") such that G is a subgroup of L where L has the same
meaning as in Lemma 3. Let KX, T,, and T have the same meaning as in
Lemma 3 and let H = G N T. Since |L/T| = n, |G/H| = |TG/T| divides
n. (2» — 1) divides |G| since G transitively permutes the (2» — 1) nonzero
elements of K. Hence |T/H| = (2" — 1)/|H| divides |G/H| which divides
n. Lemma 4 now implies that every nonzero element of C belongs to T.
Therefore S = T, for some nonzero u in K. Now for x and y in K, define
xoy by the rule xoy = [x,y] + u(xy)*" . Since T, =S commutes
with all elements of G, Lemma 3 implies that (x o )R = (xR) o (yR) for
all R € G. Therefore, replacing [ , ] by o, we obtain a new automorphic
algebra B. Since for all x, xox = xS + p(x®*"" = xT, + xT, =0, B
cannot be a quasi division algebra. Thus, Theorem 2 implies that x o y = 0
for all x and y in K. An immediate consequence of this is that 4 is iso-
morphic to A(n, w).

It is natural to ask whether A(n, ) and A(m, A) could be isomorphic.
This is answered by our final result.

THEOREM 4. A(m, A) and A(n, u) are isomorphic if, and only if, m = n
and there is an automorphism S of GF(2") such that AS = u.



14 FLETCHER GROSS

PRrROOF. Since A(m, A) has order 2™, A(m, ) and A(n, u) cannot be
isomorphic if m 5 n. Now let K = GF(2") and assume that 4 and u are
two nonzero elements of K. Let [x, y] = A(xp)*" " and x oy = p(xy)*""
for all x and y in K. Then A(n, 1) and A(n, u) are isomorphic if, and only
if, there is a mapping S of K onto K such that (x + y)S = xS + yS and
[x, y1§ = (xS) o (pS) for all x and y in K. If S is an automorphism of
K such that AS = u, then Shas the above properties and A(n, ) and A(n, u)
are isomorphic. Conversely, suppose S is a mapping of K onto K satisfying
the above. If T, is the mapping x — ax, then ST, also satisfies the above
properties. Thus, without loss of generality, we may assume that
1S = 1. From [1,1]S = (18)0 (1S) = 1o 1, we obtain AS = u. From
[x, x]S = (xS) o (x5), we find that (1x)S = u(xS) for all x in K. Next
[x%,11S = (x2S)o (1S) implies that (Ax)S = u(x2S)?"". Therefore,
(x28)"" = xS = ((xS)?""". Since we are working over a field of charac-
teristic 2, this implies that (x2S = (xS)? for all x € K. Finally, it follows
from [x2, 2] = (x25) o (2S) = (xS)% o (pS)? that (Axy)S = u((xy)S) =
#(xS)(yS). An immediate consequence of this is that .S'is an automorphism
of K which proves the theorem.
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