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FINITE AUTOMORPHIC ALGEBRAS OVER GF(2)

FLETCHER GROSS1

Abstract. If A is a finite nonassociative algebra over GF(2)

and G is a group of automorphisms of A such that G transitively

permutes the nonzero elements of A, then it is shown that either

A- = 0 or the nonzero elements of A form a quasi-group under

multiplication. Under the additional hypothesis that G is solvable,

the algebra A is completely determined.

All algebras considered in this paper are nonassociative. Shult [5]

proved that if A is a finite automorphic algebra over GF(^r) and q > 2,

then either A2 = 0 or A is a quasi division algebra. Here an automorphic

algebra is one in which the automorphisms of the algebra transitively

permute the one-dimensional subspaces. A quasi division algebra is an

algebra in which the nonzero elements form a quasi-group under multi-

plication. One of the purposes of the present paper is to show that the

restriction q > 2 in Shult's Theorem is unnecessary. Actually a great

deal of Shult's argument still applies when q = 2. Where Shult's proof

breaks down for q = 2, the Feit-Thompson Theorem, a theorem on

solvable transitive linear groups, and a number theoretic result of Shaw

[4] combine to finish the proof.

If A is a finite automorphic algebra over GF(q), q > 2, and A2 0,

then Shult [6] showed that A = GF(q). For q = 2, we prove the weaker

result that if A is a finite algebra over GF(2), A2 ^ 0, and G is a solvable

group of automorphisms of A such that G transitively permutes the non-

zero elements of A, then A is isomorphic to the algebra A(n, ju) for some

positive integer n and some nonzero element p. in GF(2"). Kostrikin [2]

obtained the same conclusion under the assumption that G is cyclic.

The algebra A(n, fi) referred to above is defined as follows: Let K =

GF(2") and let /u be a fixed nonzero element of K. For x and y in K,

define [x, y] by the rule [x, y] = //(xv)2"1. Then A(n, p) is the algebra

over GF(2) obtained from AT by replacing multiplication by [ , ]. A(n, p)
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is an automorphic algebra since if A is any nonzero element of K, then

the mapping x -** Ax for all x e K is an automorphism of A(n, p). (With

p = 1, the algebras A(n, p) also occur as examples in [6].)

Before proceeding to our main theorems, we require some preliminary

results.

Lemma 1. If n, r, and a are nonnegative integers such that 2" = 1

(mod r), rn & 0 (mod 2" — 1), and 2" = 1 (mod r), then a = 0 (mod «).

This is proved by Shaw [4, Lemma 4].

Lemma 2. If n, r, a, b, c, and d are nonnegative integers such that

2" = 1 (mod r), rn = 0 (mod 2" - 1), and 2a + 2" = 2C + 2* (mod/-),

then a + b = c + d (mod n).

Proof. This is certainly true if the sets {a, b) and {c, d} are the same

modulo n. If they are not, then it follows from [4, Lemma 5] that n = 6.

In this case, the lemma is established by a straightforward examination

of the possible values (mod n) of a, b, c, and d.

Lemma 3. Let K — GF(2K) and for 0 ^ A e K, let Tk be the mapping of

K defined by xTk = Ax. Let R be the mapping xR = x2. Let T be the

group consisting of all Tx for 0 5^ A e K, let U be the cyclic group generated

by R, and let L = TU. Next suppose p. is a fixed nonzero element of Kand

define [x,y]for x and y in K by the rule [x,y] = pixy)2""1. If S e L and

STU = T^S, then [xS, yS] = [x, y]S for all x andy in K.

Proof. Let C be the subgroup of L consisting of those elements of L

which commute with Tk. Clearly C contains T and it is easily verified that

[x, y]S — [xS, yS] for all S e T. Thus, to prove the lemma it suffices to

show that [x, y]S = [xS, yS] if 5 e C n U. If S e C n U, then we must

have pS = p. But then, since S is an automorphism of K, the desired

result follows immediately.

Lemma 4. Let K, Tx, and T have the same meaning as in Lemma 3.

Suppose that H is a Subgroup of T such that \TjH\ divides n. If R is any

nonzero homomorphism of the additive group of K into itself such that R

commutes with all elements of H, then R e T.

Proof. Since R ^ 0, there is an element x in K such that xR ^ 0.

Let A = x~1(xR). Then (R — Tx) commutes with all elements of H and

has nonzero kernel. By Lemma 1, H acts irreducibly on the additive

group of K. Schur's Lemma now implies that R — Tk = 0. Therefore

Re T.

Theorem 1. Let A be a finite algebra over GF(2) and assume that B

is a left ideal in A such that B2 = 0. Assume that for each x e A, the linear
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transformation Lx of B defined by Lxy = xy for y e B is a nilpotent trans-

formation. Suppose further that G is a group of automorphisms of A such

that B is G-invariant and G acts transitively on the nonzero elements of B.

Then AB = 0.

Proof. This corresponds to Theorem 4 of [5]. As in the proof of that

theorem we may assume that there is a minimal counterexample A

satisfying (in addition to the hypothesis of the theorem) the following:

(i) As a G-module, A is the direct sum of the G-invariant subspaces

Wand B.

(ii) W2 = B2 = BW = 0 # WB.
Proceeding exactly as in [4, steps (a) through (d)] we find that

(a) If w e W and wB = 0, then w = 0.

(b) W is an irreducible G-module.

(c) B is a faithful G-module.

(d) G has odd order.

It follows from (d) and the Feit-Thompson Theorem [1] that G is

solvable. If |Z?| = 2", then Theorem 19.9 of [3] now implies that G has a

normal cyclic subgroup C of order r where 2" = 1 (mod r) and rn = 0

(mod 2" — 1). By Lemma 1, C acts irreducibly on B. As in step (h) of

Shult's proof, we conclude that C acts in a fixed-point-free manner on W.

Next, Shult's proof of step (i) is applicable and so there are nonnegative

integers au a2, bx, b2 such that ax ^ a2 (mod «), 6, ^ b2 (mod ri), but

2«i + 2bl+"2 a 2"2 + 2b2+a' (mod r). Lemma 2 now yields a, + bx + a2 =

a2 + b2 + ax (mod n) which contradicts bx ^ b2 (mod n). Thus Theorem 1

is proved.

Theorem 2. If A is a finite automorphic algebra over GF(2), then either

A2 = 0 or A is a quasi division algebra.

Proof. This is derived from Theorem 1 by exactly the same process

Shult uses to derive his Theorem 1 from his Theorem 4.

For the rest of this paper, with the exception of Theorem 4, we make

the following assumptions: A is a finite algebra over GF(2), A2 ^ 0, and

G is a (not necessarily solvable) group of automorphisms of A which acts

transitively on the nonzero elements of A. If x and y belong to A, the

product of x and y will be denoted by [x, y]. S will denote the mapping

x-> [x, x] for x e A. C will be the set of all homomorphisms of A into

itself where A is considered as a G-module. By Schur's Lemma, C is a

division ring. Since C is finite, C is a field of characteristic 2. Finally let

\A\ = 2".

Lemma 5. [x,y] = [y, x]for all x andy in A. IfTeC, then [x,yT] =

[xT,y].
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Proof. Suppose T eC and define x °y by the rule x °y = [xT,y] +

[yT, x]. Using this operation instead of multiplication we obtain a new

algebra B. If Re G, then (x ° y)R = (xR) ° (yR) for all x and y in A.

Hence B is an automorphic algebra. But x ° x = 0 for all x since we are

working over a field of characteristic 2. It now follows from Theorem 2

that x°y = 0 for all x and y. Thus [xr,y] = [yJ, x]. With T= 1,

we obtain [x,y] = [y, x] and the lemma follows.

Corollary.   S e C.

Proof, (x + y)5 = xS + yS + [x, y] + [y, x] = xS + yS. Clearly.

(xSjT = (xT)5 for all T eG.

Lemma 6. If TeC, then [x,y]T= [xT,yT] for all x and y in A.

Thus the nonzero members of C are automorphisms of A as an algebra.

Proof. Define x°y by the rule x°y= [x,y\T + [xT,yT]. Using

this instead of multiplication, we obtain a new algebra B. B is an automor-

phic algebra since (x ° y)R = (xR) ° (yR) for all Re G. Now x ° x =

xST + xTS. But, since C is a field, ST = TS. Thus x ° x = 0. Theorem 2

implies that x ° y = 0 for all x and y in A. Therefore, Lemma 6 is proved.

Theorem 3. If G is solvable, then A is isomorphic to A(n, pi) for some

nonzero element p in GF(2").

Proof. If G is solvable, then we may identify the additive group of A

with GF(2") such that G is a subgroup of L where L has the same

meaning as in Lemma 3. Let K, Tx, and T have the same meaning as in

Lemma 3 and let H = G n T. Since \L\T\ = n, \G\H\ = \TG\T\ divides
n. (2n — 1) divides |G| since G transitively permutes the (2n — 1) nonzero

elements of K. Hence \T/H\ = (2n - l)/\H\ divides \GjH\ which divides

n. Lemma 4 now implies that every nonzero element of C belongs to T.

Therefore S = Ta for some nonzero p in K. Now for x and y in K, define

x°y by the rule x °y = [x,y] + p(xy)2" . Since Tu = S commutes

with all elements of G, Lemma 3 implies that (x <> y)R = (xi?) ° (yR) for

all Re G. Therefore, replacing [ , ] by °, we obtain a new automorphic

algebra B. Since for all x, x ° x = xS + p(x2)2" 1 = xT^ + xTu = 0, B

cannot be a quasi division algebra. Thus, Theorem 2 implies that x °y = 0

for all x and y in AT. An immediate consequence of this is that A is iso-

morphic to A(n, p).

It is natural to ask whether A(n, p) and A(m, X) could be isomorphic.

This is answered by our final result.

Theorem 4. A(m, X) and A(n, p) are isomorphic if, and only ifm = n

and there is an automorphism S of GF(2") such that XS = p.
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Proof. Since A(m, X) has order 2m, A(m, A) and A(n, p.) cannot be

isomorphic if m ^ n. Now let K = GF(2n) and assume that A and p are

two nonzero elements of K. Let [x, y] = A(xy)2" * and x ° y = p(xy)2"1

for all x andy in K. Then A(n, X) and A(n, p) are isomorphic if, and only

if, there is a mapping S of K onto K such that (x + y)S = xS + yS and

[x, y]S = (xS) o (yS) for all x and y in A'. If S is an automorphism of

Ksuch that AS = p, then Shas the above properties and^4(«, A) and ^4(«, /<)

are isomorphic. Conversely, suppose Sis a mapping of AT onto AT satisfying

the above. If Ta is the mapping x —*■ ax, then ATa also satisfies the above

properties. Thus, without loss of generality, we may assume that

IS = 1. From [1, l]S = (IS) ° (IS) = 1 ° 1, we obtain AS = From
[x, x]S = (xS) o (xS), we find that (Ax)S = ^(xS) for all x in AT. Next

[x2, 1]S= (x2S)°(lS) implies that (Ax)S = p(x2S)2"~\ Therefore,

(x2S)2"-1 = xS = ((xS)2)2" \ Since we are working over a field of charac-

teristic 2, this implies that (x2)S = (xS)2 for all x e K. Finally, it follows

from [x2,y2]S = (x2S) ° (y2S) = (xS)2 o (yS)2 that (Axy)S = Ja((xy)S) =

/*(xS)(yS). An immediate consequence of this is that Sis an automorphism

of K which proves the theorem.
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