FINITE AUTOMORPHIC ALGEBRAS OVER GF(2)

FLETCHER GROSS¹

ABSTRACT. If A is a finite nonassociative algebra over GF(2) and G is a group of automorphisms of A such that G transitively permutes the nonzero elements of A, then it is shown that either $A^2 = 0$ or the nonzero elements of A form a quasi-group under multiplication. Under the additional hypothesis that G is solvable, the algebra A is completely determined.

All algebras considered in this paper are nonassociative. Shult [5] proved that if A is a finite automorphic algebra over GF(q) and q > 2, then either $A^2 = 0$ or A is a quasi division algebra. Here an automorphic algebra is one in which the automorphisms of the algebra transitively permute the one-dimensional subspaces. A quasi division algebra is an algebra in which the nonzero elements form a quasi-group under multiplication. One of the purposes of the present paper is to show that the restriction q > 2 in Shult's Theorem is unnecessary. Actually a great deal of Shult's argument still applies when q = 2. Where Shult's proof breaks down for q = 2, the Feit-Thompson Theorem, a theorem on solvable transitive linear groups, and a number theoretic result of Shaw [4] combine to finish the proof.

If A is a finite automorphic algebra over GF(q), q > 2, and $A^2 \neq 0$, then Shult [6] showed that A = GF(q). For q = 2, we prove the weaker result that if A is a finite algebra over GF(2), $A^2 \neq 0$, and G is a solvable group of automorphisms of A such that G transitively permutes the nonzero elements of A, then A is isomorphic to the algebra $A(n, \mu)$ for some positive integer n and some nonzero element μ in $GF(2^n)$. Kostrikin [2] obtained the same conclusion under the assumption that G is cyclic.

The algebra $A(n, \mu)$ referred to above is defined as follows: Let $K = GF(2^n)$ and let μ be a fixed nonzero element of K. For x and y in K, define [x, y] by the rule $[x, y] = \mu(xy)^{2^{n-1}}$. Then $A(n, \mu)$ is the algebra over GF(2) obtained from K by replacing multiplication by $[x, y] = \mu(xy)^{2^{n-1}}$.

Received by the editors February 12, 1971.

AMS 1970 subject classifications. Primary 17A99; Secondary 20B25.

Key words and phrases. Finite automorphic algebra.

¹ Research supported in part by NSF Grant GP-12028.

is an automorphic algebra since if λ is any nonzero element of K, then the mapping $x \to \lambda x$ for all $x \in K$ is an automorphism of $A(n, \mu)$. (With $\mu = 1$, the algebras $A(n, \mu)$ also occur as examples in [6].)

Before proceeding to our main theorems, we require some preliminary results.

LEMMA 1. If n, r, and a are nonnegative integers such that $2^n \equiv 1 \pmod{r}$, $rn \equiv 0 \pmod{2^n - 1}$, and $2^a \equiv 1 \pmod{r}$, then $a \equiv 0 \pmod{n}$.

This is proved by Shaw [4, Lemma 4].

LEMMA 2. If n, r, a, b, c, and d are nonnegative integers such that $2^n \equiv 1 \pmod{r}$, $rn \equiv 0 \pmod{2^n - 1}$, and $2^a + 2^b \equiv 2^c + 2^d \pmod{r}$, then $a + b \equiv c + d \pmod{n}$.

PROOF. This is certainly true if the sets $\{a, b\}$ and $\{c, d\}$ are the same modulo n. If they are not, then it follows from [4, Lemma 5] that n = 6. In this case, the lemma is established by a straightforward examination of the possible values (mod n) of a, b, c, and d.

Lemma 3. Let $K = GF(2^n)$ and for $0 \neq \lambda \in K$, let T_{λ} be the mapping of K defined by $xT_{\lambda} = \lambda x$. Let R be the mapping $xR = x^2$. Let T be the group consisting of all T_{λ} for $0 \neq \lambda \in K$, let U be the cyclic group generated by R, and let L = TU. Next suppose μ is a fixed nonzero element of K and define [x, y] for x and y in K by the rule $[x, y] = \mu(xy)^{2^{n-1}}$. If $S \in L$ and $ST_u = T_uS$, then [xS, yS] = [x, y]S for all x and y in K.

PROOF. Let C be the subgroup of L consisting of those elements of L which commute with T_{λ} . Clearly C contains T and it is easily verified that [x, y]S = [xS, yS] for all $S \in T$. Thus, to prove the lemma it suffices to show that [x, y]S = [xS, yS] if $S \in C \cap U$. If $S \in C \cap U$, then we must have $\mu S = \mu$. But then, since S is an automorphism of K, the desired result follows immediately.

LEMMA 4. Let K, T_{λ} , and T have the same meaning as in Lemma 3. Suppose that H is a subgroup of T such that |T/H| divides n. If R is any nonzero homomorphism of the additive group of K into itself such that R commutes with all elements of H, then $R \in T$.

PROOF. Since $R \neq 0$, there is an element x in K such that $xR \neq 0$. Let $\lambda = x^{-1}(xR)$. Then $(R - T_{\lambda})$ commutes with all elements of H and has nonzero kernel. By Lemma 1, H acts irreducibly on the additive group of K. Schur's Lemma now implies that $R - T_{\lambda} = 0$. Therefore $R \in T$.

THEOREM 1. Let A be a finite algebra over GF(2) and assume that B is a left ideal in A such that $B^2 = 0$. Assume that for each $x \in A$, the linear

transformation L_x of B defined by $L_x y = xy$ for $y \in B$ is a nilpotent transformation. Suppose further that G is a group of automorphisms of A such that B is G-invariant and G acts transitively on the nonzero elements of B. Then AB = 0.

PROOF. This corresponds to Theorem 4 of [5]. As in the proof of that theorem we may assume that there is a minimal counterexample A satisfying (in addition to the hypothesis of the theorem) the following:

- (i) As a G-module, A is the direct sum of the G-invariant subspaces W and B.
 - (ii) $W^2 = B^2 = BW = 0 \neq WB$.

Proceeding exactly as in [4, steps (a) through (d)] we find that

- (a) If $w \in W$ and wB = 0, then w = 0.
- (b) W is an irreducible G-module.
- (c) B is a faithful G-module.
- (d) G has odd order.

It follows from (d) and the Feit-Thompson Theorem [1] that G is solvable. If $|B|=2^n$, then Theorem 19.9 of [3] now implies that G has a normal cyclic subgroup C of order r where $2^n\equiv 1\pmod{r}$ and $rn\equiv 0\pmod{2^n-1}$. By Lemma 1, C acts irreducibly on B. As in step (h) of Shult's proof, we conclude that C acts in a fixed-point-free manner on W. Next, Shult's proof of step (i) is applicable and so there are nonnegative integers a_1 , a_2 , b_1 , b_2 such that $a_1\not\equiv a_2\pmod{n}$, $b_1\not\equiv b_2\pmod{n}$, but $2^{a_1}+2^{b_1+a_2}\equiv 2^{a_2}+2^{b_2+a_1}\pmod{n}$. Lemma 2 now yields $a_1+b_1+a_2\equiv a_2+b_2+a_1\pmod{n}$ which contradicts $b_1\not\equiv b_2\pmod{n}$. Thus Theorem 1 is proved.

THEOREM 2. If A is a finite automorphic algebra over GF(2), then either $A^2 = 0$ or A is a quasi division algebra.

PROOF. This is derived from Theorem 1 by exactly the same process Shult uses to derive his Theorem 1 from his Theorem 4.

For the rest of this paper, with the exception of Theorem 4, we make the following assumptions: A is a finite algebra over GF(2), $A^2 \neq 0$, and G is a (not necessarily solvable) group of automorphisms of A which acts transitively on the nonzero elements of A. If x and y belong to A, the product of x and y will be denoted by [x, y]. S will denote the mapping $x \rightarrow [x, x]$ for $x \in A$. C will be the set of all homomorphisms of A into itself where A is considered as a G-module. By Schur's Lemma, C is a division ring. Since C is finite, C is a field of characteristic 2. Finally let $|A| = 2^n$.

LEMMA 5. [x, y] = [y, x] for all x and y in A. If $T \in C$, then [x, yT] = [xT, y].

PROOF. Suppose $T \in C$ and define $x \circ y$ by the rule $x \circ y = [xT, y] + [yT, x]$. Using this operation instead of multiplication we obtain a new algebra B. If $R \in G$, then $(x \circ y)R = (xR) \circ (yR)$ for all x and y in A. Hence B is an automorphic algebra. But $x \circ x = 0$ for all x since we are working over a field of characteristic 2. It now follows from Theorem 2 that $x \circ y = 0$ for all x and y. Thus [xT, y] = [yT, x]. With T = 1, we obtain [x, y] = [y, x] and the lemma follows.

Corollary. $S \in C$.

PROOF. (x + y)S = xS + yS + [x, y] + [y, x] = xS + yS. Clearly. (xS)T = (xT)S for all $T \in G$.

LEMMA 6. If $T \in C$, then [x, y]T = [xT, yT] for all x and y in A. Thus the nonzero members of C are automorphisms of A as an algebra.

PROOF. Define $x \circ y$ by the rule $x \circ y = [x, y]T + [xT, yT]$. Using this instead of multiplication, we obtain a new algebra B. B is an automorphic algebra since $(x \circ y)R = (xR) \circ (yR)$ for all $R \in G$. Now $x \circ x = xST + xTS$. But, since C is a field, ST = TS. Thus $x \circ x = 0$. Theorem 2 implies that $x \circ y = 0$ for all x and y in A. Therefore, Lemma 6 is proved.

THEOREM 3. If G is solvable, then A is isomorphic to $A(n, \mu)$ for some nonzero element μ in $GF(2^n)$.

PROOF. If G is solvable, then we may identify the additive group of A with GF(2ⁿ) such that G is a subgroup of L where L has the same meaning as in Lemma 3. Let K, T_{λ} , and T have the same meaning as in Lemma 3 and let $H = G \cap T$. Since |L/T| = n, |G/H| = |TG/T| divides n. $(2^n - 1)$ divides |G| since G transitively permutes the $(2^n - 1)$ nonzero elements of K. Hence $|T/H| = (2^n - 1)/|H|$ divides |G/H| which divides n. Lemma 4 now implies that every nonzero element of C belongs to T. Therefore $S = T_{\mu}$ for some nonzero μ in K. Now for x and y in K, define $x \circ y$ by the rule $x \circ y = [x, y] + \mu(xy)^{2^{n-1}}$. Since $T_{\mu} = S$ commutes with all elements of G, Lemma 3 implies that $(x \circ y)R = (xR) \circ (yR)$ for all $R \in G$. Therefore, replacing [,] by \circ , we obtain a new automorphic algebra B. Since for all x, $x \circ x = xS + \mu(x^2)^{2^{n-1}} = xT_{\mu} + xT_{\mu} = 0$, B cannot be a quasi division algebra. Thus, Theorem 2 implies that $x \circ y = 0$ for all x and y in K. An immediate consequence of this is that A is isomorphic to $A(n, \mu)$.

It is natural to ask whether $A(n, \mu)$ and $A(m, \lambda)$ could be isomorphic. This is answered by our final result.

THEOREM 4. $A(m, \lambda)$ and $A(n, \mu)$ are isomorphic if, and only if, m = n and there is an automorphism S of $GF(2^n)$ such that $\lambda S = \mu$.

PROOF. Since $A(m, \lambda)$ has order 2^m , $A(m, \lambda)$ and $A(n, \mu)$ cannot be isomorphic if $m \neq n$. Now let $K = GF(2^n)$ and assume that λ and μ are two nonzero elements of K. Let $[x, y] = \lambda(xy)^{2^{n-1}}$ and $x \circ y = \mu(xy)^{2^{n-1}}$ for all x and y in K. Then $A(n, \lambda)$ and $A(n, \mu)$ are isomorphic if, and only if, there is a mapping S of K onto K such that (x + y)S = xS + yS and $[x, y]S = (xS) \circ (yS)$ for all x and y in K. If S is an automorphism of K such that $\lambda S = \mu$, then S has the above properties and $A(n, \lambda)$ and $A(n, \mu)$ are isomorphic. Conversely, suppose S is a mapping of K onto K satisfying the above. If T_{α} is the mapping $x \to \alpha x$, then ST_{α} also satisfies the above properties. Thus, without loss of generality, we may assume that 1S = 1. From $[1, 1]S = (1S) \circ (1S) = 1 \circ 1$, we obtain $\lambda S = \mu$. From $[x, x]S = (xS) \circ (xS)$, we find that $(\lambda x)S = \mu(xS)$ for all x in K. Next $[x^2, 1]S = (x^2S) \circ (1S)$ implies that $(\lambda x)S = \mu(x^2S)^{2^{n-1}}$. Therefore, $(x^2S)^{2^{n-1}} = xS = ((xS)^2)^{2^{n-1}}$. Since we are working over a field of characteristic 2, this implies that $(x^2)S = (xS)^2$ for all $x \in K$. Finally, it follows from $[x^2, y^2]S = (x^2S) \circ (y^2S) = (xS)^2 \circ (yS)^2$ that $(\lambda xy)S = \mu((xy)S) =$ $\mu(xS)(yS)$. An immediate consequence of this is that S is an automorphism of K which proves the theorem.

REFERENCES

- 1. W. Feit and J. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775-1029. MR 29 #3538.
- 2. A. I. Kostrikin, On homogeneous algebras, Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 471-484; English transl., Amer. Math. Soc. Transl. (2) 66 (1968), 130-144. MR 31 #219.
 - 3. D. Passman, Permutation groups, Benjamin, New York, 1968. MR 38 #5908.
- 4. D. Shaw, The Sylow 2-subgroups of finite, soluble groups with a single class of involutions, J. Algebra 16 (1970), 14-26.
- 5. E. E. Shult, On finite automorphic algebras, Illinois J. Math. 13 (1969), 625-653. MR 40 #1441.
- 6. —, On the triviality of finite automorphic algebras, Illinois J. Math. 13 (1969), 654-659. MR 40 #1442.

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112