ON A FACTORIZATION THEOREM OF D. LOWDENSLAGER¹

V. MANDREKAR AND H. SALEHI

ABSTRACT. For a positive-definite infinite-dimensional matrix-valued function M defined on the unit circle a factorization theorem for M in the form $M = AA^*$, where A is a function with Fourier series $\sum_{n>0} A_n e^{in\theta}$, is proved. The theorem, as was originally stated by D. Lowdenslager, contained an error. Based on our study concerning the completeness of the space of square-integrable operator-valued functions (not necessarily bounded) with respect to a nonnegative bounded operator-valued measure a correct proof of the factorization problem is provided. This work subsumes several known results concerning the factorization problem.

1. Introduction. For a positive-definite infinite-dimensional matrixvalued function M defined on the unit circle, D. Lowdenslager [6] gave a proof of factorization theorem for M in the form $M = AA^*$, where A is a function with Fourier series $\sum_{n>0} A_n e^{in\theta}$. Theorem 2 of [6] as stated contains an error as shown by the counterexample in [1]. In case M and M^{-1} are bounded, Theorem 2 of [6] remains valid (Helson [3, p. 118]). In [8], M. Nadkarni remarks that the completeness of the space $L_{2,M}$ presumed in [6] is probably not valid without additional assumptions. Recently, we have studied, in [7], the completeness of the space L_{2M} of square-integrable operator-valued functions (not necessarily bounded) with respect to a nonnegative bounded operator-valued measure M. Based on our study of $L_{2,M}$, we state a correct form of Theorem 2 of [6] such that Lowdenslager's proof is corrected. Also, this provides a form of factorization theorem more general than the one in [3] and [1]. In fact, as a consequence of our theorem (cf. Theorem 3.3), the main theorem of Douglas [1, Theorem 1] can be deduced.

We remark that the proof of Lowdenslager is in the same spirit as the original work of H. Wold [9] on prediction theory.

2. **Preliminaries.** For any two separable (complex) Hilbert-spaces \mathcal{H} , \mathcal{H} with inner products $(\cdot, \cdot)_{\mathcal{H}}$, $(\cdot, \cdot)_{\mathcal{H}}$ and norms $|\cdot|_{\mathcal{H}}$, $|\cdot|_{\mathcal{H}}$ we denote

Received by the editors October 12, 1970.

AMS 1970 subject classifications. Primary 42A96; Secondary 28A45.

Key words and phrases. Hilbert space, operator-valued functions and measures, measurability, generalized inverse factorization problem.

¹ This research was supported by NSF GP-11626.

by

- (a) $O(\mathcal{K}, \mathcal{K})$, the class of all linear operators from \mathcal{K} into \mathcal{K} ;
- (b) $B(\mathcal{K}, \mathcal{K})$, the class of all bounded operators on \mathcal{K} into \mathcal{K} ;
- (c) $B^+(\mathcal{K}, \mathcal{K})$, the class of all nonnegative definite operators in $B(\mathcal{K}, \mathcal{K})$;
- (d) $HS(\mathcal{K}, \mathcal{K})$, the class of all Hilbert-Schmidt operators in $B(\mathcal{K}, \mathcal{K})$.
- (e) $C(\mathcal{K}, \mathcal{K})$, the class of compact operators in $B(\mathcal{K}, \mathcal{K})$.

Let \mathcal{B} be a σ -ring of subsets of a space Ω . We shall need a concept of measurability of $O(\mathcal{K}, \mathcal{K})$ -valued functions. For $B(\mathcal{K}, \mathcal{K})$ -valued functions the notion of measurability (weak and strong) has been defined before [5, p. 74]. In view of the separability of \mathcal{K} and \mathcal{K} the weak and strong measurability are equivalent. We shall refer to both notions as measurability. Following is our extension of the notion of measurability.

2.1 DEFINITION. Let Φ be an $O(\mathcal{K}, \mathcal{K})$ -valued function on Ω ; then Φ is said to be \mathcal{B} -measurable if there exists a sequence of \mathcal{B} -measurable $B(\mathcal{K}, \mathcal{K})$ -valued functions (Φ_n) such that for each $\omega \in \Omega$ and for each x in the domain of $\Phi(\omega)$, we have $\lim_{n\to\infty} |\Phi_n(\omega)x - \Phi(\omega)x|_{\mathcal{K}} = 0$.

Let μ be measurable on \mathcal{B} and M be a \mathcal{B} -measurable $B^+(\mathcal{H}, \mathcal{H})$ -valued function on Ω such that for each $x \in \mathcal{H}$, $\int_{\Omega} |Mx|_{\mathcal{H}} d\mu$ is finite. For the countably additive $B^+(\mathcal{H}, \mathcal{H})$ -valued measure given by indefinite integral of M, we define $L_{2,M}$ as follows [7, Remark 4.11].

2.2 DEFINITION. The space $L_{2,M}$ consists of \mathcal{B} -measurable $O(\mathcal{K}, \mathcal{K})$ -valued functions Φ satisfying (i) $\Phi \sqrt{M}$ is $HS(\mathcal{K}, \mathcal{K})$ -valued a.e. $[\mu]$ and (ii) the real-valued function $|\Phi \sqrt{M}|_E^2$ is square-integrable μ .

In $L_{2,M}$, $\Phi = \Psi$ iff $\Phi \sqrt{M} = \Psi \sqrt{M}$ a.e. $[\mu]$. If M is $C(\mathcal{K}, \mathcal{K})$ -valued we showed [7, Theorem 4.19] that $L_{2,M}$ is a (complete) Hilbert space. In the proof of the completeness of $L_{2,M}$, we made use of the fact that M^- , the generalized inverse³ of a \mathcal{B} -measurable compact operator valued function M is \mathcal{B} -measurable. As we mentioned in Remark 4.16 in [7], $L_{2,M}$ remains complete if we know that M^- is measurable. We establish this result below.

2.3 Lemma. Let A be a B-measurable $B^+(\mathcal{K}, \mathcal{K})$ -valued function then A^- is a B-measurable $O(\mathcal{K}, \mathcal{K})$ -valued function.

PROOF. Consider for each a, b ($-\infty < a < b < +\infty$), the function $I_{(a,b]}(x) = 1$ for $x \in (a,b]$ and = 0 for $x \notin (a,b]$ defined on R. Then there exists a sequence $\{p_n(\cdot)\}$ of polynomials such that $|p_n(x)| \le 1$ for all $x \in R$ and $\lim_{n\to\infty} p_n(x) = I_{(a,b]}(x)$ for each x. Consider now $A(\omega) = \int \lambda E_{\omega}(d\lambda)$. Then, for each $h \in \mathcal{H}$,

$$||E_{\omega}(a, b]h - p_{n}(A(\omega))h||_{\mathcal{H}}^{2} = \int |I_{(a,b]}(x) - p_{n}(x)|^{2} (E_{\omega}(dx)h, h).$$

² | |_E denotes the Hilbert-Schmidt norm.

³ For the definition of generalized inverse see [7, Definition 2.11].

Hence by the Lebesgue dominated convergence theorem, as $n \to \infty$,

$$||E_{\omega}(a,b]h - p_n(A(\omega))h||_{\mathcal{H}}^2 \rightarrow 0.$$

This implies $E_{\omega}(a, b]$ is a measurable function of ω . Hence

$$\int_{\lambda > 1/n} \lambda^{-} E_{\omega}(d\lambda)$$

is a measurable function of ω . Now by Hestenes [4, pp. 1326 and 1337] we get

$$\left\| \dot{A}^{-}(\omega)h - \int_{\lambda > 1/n} \lambda^{-} E_{\omega}(d\lambda)h \right\|_{\mathcal{H}} \to 0$$

for each $h \in \text{domain of } A^-(\omega)$. Therefore $A^-(\cdot)$ is \mathfrak{B} -measurable in the sense of Definition 2.1.

- 3. Factorization problem. Let M be a measurable $B^+(\mathcal{H}, \mathcal{H})$ -valued function defined on the unit circle which is Bochner integrable with respect to Lebesgue measure μ .
- 3.1 DEFINITION. We say that M is factorable if there exists a measurable $B(\mathcal{K}, \mathcal{K})$ -valued function A such that
 - (i) $M = AA^*$,
- (ii) $A(e^{i\theta}) = \sum_{n\geq 0} A_n e^{in\theta}$,

where $A_n \in B(\mathcal{K}, \mathcal{K})$ and the convergence is taken in the strong sense.

3.2 THEOREM. Let M_1 , M_2 be measurable $B^+(\mathcal{K}, \mathcal{K})$ -valued functions defined on the unit circle which are Bochner integrable with respect to Lebesgue measure μ . If (i) $M_2 \geq M_1$, ⁴ (ii) the injection map is one-one on L_{2,M_2} into L_{2,M_1} . Then M_1 factorable implies M_2 is factorable.

Under the above assumptions the proof in [6] is valid and hence is omitted. In case of [6] the error comes from the fact that the injection map is not one-one.

3.3 COROLLARY (HELSON [3, p. 118]). Let M_1 and M_2 be $B^+(\mathcal{K}, \mathcal{K})$ -valued functions such that $M_2 \geq M_1$. Suppose that M_1^{-1} exists and is bounded and M_1 is factorable then M_2 is factorable.

PROOF. Since M_1^{-1} is bounded, the space L_{2,M_1} consists only of $HS(\mathcal{K}, \mathcal{K})$ -valued functions [7, Remark 4.16]. Further, $M_2 \geq M_1$ and $\mathcal{N}_{M_1}^{5} = \{0\}$ implies $\mathcal{N}_{M_2} = \{0\}$. This implies that the injection map is one-one.

⁴ This implies that $L_{2,M_2} \subseteq L_{2,M_1}$ and that the injection map is a contraction (see [7, Definition 2.2] and [2, Theorem 1]).

⁵ For an operator A, \mathcal{N}_A denotes the null of A and \mathcal{R}_A will denote the range of A.

- 3.4 Lemma. Let M_1 , M_2 be measurable $B^+(\mathcal{K}, \mathcal{K})$ -valued functions defined on the unit circle and Bochner integrable with respect to Lebesgue measure μ and satisfying
 - (i) $M_2 \geq M_1$,
 - (ii) $\mathcal{N}_{M_1} = \mathcal{N}_{M_2}$,
- (iii) there exists a measurable positive scalar-valued function such that $\sqrt{M_2M_1}\sqrt{M_2} \leq \varphi M_1$.

Then the injection map is one-one.

PROOF. By (iii) and Theorem 1 of [2], $\Re(\sqrt{M_1}) \supseteq \Re(\sqrt{M_2}\sqrt{M_1})$. Now $\|\Phi\|_{M_1} = 0$ implies $\Phi\sqrt{M_1} = 0$ a.e. $[\mu]$. Hence $\|\Phi\|_{M_1} = 0$ implies $\Phi\sqrt{M_2}\sqrt{M_1} = 0$ a.e. $[\mu]$. But $\Phi \in L_{2,M_2}$, $\Phi\sqrt{M_2}$ is bounded giving $\Phi\sqrt{M_2} = 0$ on closure of $\Re(\sqrt{M_1})$. This and (ii) implies that $\Phi\sqrt{M_2} = 0$ a.e. μ giving $\|\Phi\|_{M_2} = 0$.

Combining Theorem 3.2 and Lemma 3.4, we obtain:

3.5 COROLLARY [1, THEOREM 1]. Let M_2 , M_1 satisfy the hypotheses of Lemma 3.4. If M_1 is factorable then so is M_2 .

REFERENCES

- 1. R. G. Douglas, On factoring positive operator functions, J. Math. Mech. 16 (1966), 119-126. MR 35 #782.
- 2. —, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413-415. MR 34 #3315.
- 3. H. Helson, Lectures on invariant subspaces, Academic Press, New York, 1964. MR 30 #1409.
- 4. M. R. Hestenes, Relative self-adjoint operators in Hilbert space, Pacific J. Math. 11 (1961), 1315-1357. MR 25 #456.
- 5. E. Hille and R. S. Phillips, Functional analysis and semi-groups, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR 19, 664.
- 6. D. B. Lowdenslager, On factoring matrix valued functions, Ann. of Math. (2) 78 (1963), 450-454. MR 27 #5094.
- 7. V. Mandrekar and H. Salehi, The square integrability of operator-valued functions with respect to a non-negative operator-valued measure and the Kolmogorov isomorphism theorem, J. Math. Mech. 20 (1970), 545-563.
- 8. M. G. Nadkarni, Vector-valued weakly stationary stochastic processes and factorability of matrix-valued functions, Thesis, Brown University, Providence, R.I., 1965.
- 9. H. Wold, A study in the analysis of stationary time series, Almqvist and Wiksell, Stockholm, 1938.

DEPARTMENT OF STATISTICS AND PROBABILITY, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48823

Current address (Salehi): Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706