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ON A FACTORIZATION THEOREM
OF D. LOWDENSLAGER1

V. MANDREKAR AND H. SALEHI

Abstract. For a positive-definite infinite-dimensional matrix-

valued function M defined on the unit circle a factorization theorem

for M in the form M = A A*, where A is a function with Fourier

series 2«>n Anein9, is proved. The theorem, as was originally stated

by D. Lowdenslager, contained an error. Based on our study con-

cerning the completeness of the space of square-integrable operator-

valued functions (not necessarily bounded) with respect to a

nonnegative bounded operator-valued measure a correct proof of

the factorization problem is provided. This work subsumes several

known results concerning the factorization problem.

1. Introduction. For a positive-definite infinite-dimensional matrix-

valued function M defined on the unit circle, D. Lowdenslager [6] gave a

proof of factorization theorem for M in the form M = AA*, where A

is a function with Fourier series ]> «>o Ane'ne. Theorem 2 of [6] as stated

contains an error as shown by the counterexample in [1]. In case M and

M"1 are bounded, Theorem 2 of [6] remains valid (Helson [3, p. 118]).

In [8], M. Nadkarni remarks that the completeness of the space Li M

presumed in [6] is probably not valid without additional assumptions.

Recently, we have studied, in [7], the completeness of the space L2M

of square-integrable operator-valued functions (not necessarily bounded)

with respect to a nonnegative bounded operator-valued measure M.

Based on our study of L2,M, we state a correct form of Theorem 2 of [6]

such that Lowdenslager's proof is corrected. Also, this provides a form of

factorization theorem more general than the one in [3] and [1]. In fact,

as a consequence of our theorem (cf. Theorem 3.3), the main theorem of

Douglas [1, Theorem 1] can be deduced.

We remark that the proof of Lowdenslager is in the same spirit as the

original work of H. Wold [9] on prediction theory.

2. Preliminaries. For any two separable (complex) Hilbert-spaces

3£,    with inner products (•, -)je> (•, Oje an(* norms | Ije* I lot we denote
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by
(a) 0(J£, x), the class of all linear operators from JG into x;

(b) B(3t, x), the class of all bounded operators on J£ into x;

(c) B+(3t, JE), the class of all nonnegative definite operators in B(3Q, J€);

(d) HS(3t, x), the class of all Hilbert-Schmidt operators in B(3&, x).

(e) C(x, x), the class of compact operators in 5(JC, x).

Let 3J be a er-ring of subsets of a space £2. We shall need a concept of

measurability of 0(J£, x)-valued functions. For B(3t, x)-valued functions

the notion of measurability (weak and strong) has been defined before

[5, p. 74]. In view of the separability of J6 and x the weak and strong

measurability are equivalent. We shall refer to both notions as measura-

bility. Following is our extension of the notion of measurability.

2.1 Definition. Let d> be an 0(x, x)-valued function on q; then

O is said to be ^-measurable if there exists a sequence of ^-measurable

2?(J€, x)-valued functions (OJ such that for each co e £2 and for each x

in the domain of <I>(co), we have lim,,^ !On(co)x — <E>(<w)*lx = 0.

Let fi be measurable on 3i and M be a ^-measurable B+(3£, J£)-valued

function on £2 such that for each xeJ£, Ju \Mx\3tdii is finite. For the

countably additive jB+(J£, x)-valued measure given by indefinite integral

of M, we define L2M as follows [7, Remark 4.11].

2.2 Definition. The space L2M consists of ^-measurable 0(x, x)-

valued functions $ satisfying (i) Q>y/M is HS(X, x)-valued a.e. [fi] and

(ii) the real-valued function \Oy/M\E 2 is square-integrabte ii.

In L2,M, O = T iff «D^/M = Y^/M a.e. |>]. If M is C(x, x)-valued we

showed [7, Theorem 4.19] that L2iM is a (complete) Hilbert space. In the

proof of the completeness of L2M, we made use of the fact that M~, the

generalized inverse3 of a ^-measurable compact operator valued function

Mis ^-measurable. As we mentioned in Remark 4.16 in [7], L2.m remains

complete if we know that M~ is measurable. We establish this result below.

2.3 Lemma. Let A be a 3S-measurable 2?+(x, 3€)-valued function then

A~ is a 3^-measurable 0(3t, 3€)-valuedfunction.

Proof. Consider for each a, b (— cc < a < b < 4-co), the function

J<o.&](x) = 1 for x e (a, b] and = 0 for x $ (a, b] defined on R. Then there

exists a sequence {/>„(•)} of polynomials such that \pn{x)\ ^ 1 for all

xeR and limn^pn(x) = I(tt.»(x) for each x. Consider now A(to) =

J XEa(dX). Then, for each h e k,

2 i |£ denotes the Hilbert-Schmidt norm.

3 For the definition of generalized inverse see [7, Definition 2.11].
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Hence by the Lebesgue dominated convergence theorem, as n -* oo,

\\Ea(a,b]h - pn(A(t»))h\\2x^0.

This implies Ea(a, b] is a measurable function of to. Hence

JX>l/n

is a measurable function of to. Now by Hestenes [4, pp. 1326 and 1337]

we get

\A-(to)h - (      Ä\-E0(dX)h\ -* 0
JX>l/n II 3d

for each h e domain of A~(co). Therefore A~{-) is 35-measurable in the

sense of Definition 2.1.

3. Factorization problem. Let M be a measurable B+(3C, J£)-valued

function defined on the unit circle which is Bochner integrable with

respect to Lebesgue measure ii.

3.1 Definition. We say that M is factorable if there exists a measur-

able £(JC, J£)-valued function A such that

(i) M = AA*,
(ii) A(ea) = I^0Aneine,

where An e 2?(X, JC) and the convergence is taken in the strong sense.

3.2 Theorem. Let Mx, M2 be measurable B+(3ß, 3£)-valued functions

defined on the unit circle which are Bochner integrable with respect to

Lebesgue measure p. If (i) M2 ^ Mu 4 (ii) the injection map is one-one

on L2Mst into L2 Mi. Then M, factorable implies M2 is factorable.

Under the above assumptions the proof in [6] is valid and hence is

omitted. In case of [6] the error comes from the fact that the injection

map is not one-one.

3.3 Corollary (Helson [3, p. 118]). Let M, and M2 be B+(3t, JC)-

valuedfunctions such that M2 ^ Mx. Suppose that M^1 exists and is bounded

and M, is factorable then M2 is factorable.

Proof. Since Äff1 is bounded, the space L2iMl consists only of

HS(3t, X)-valued functions [7, Remark 4.16]. Further, M2 ^ Mx and

JCjtfi5 = {0} implies JVjf = {0}. This implies that the injection map is

one-one.

4 This implies that L2,M2 ̂  LliMl and that the injection map is a contraction (see

[7, Definition 2.2] and [2, Theorem 1]).

5 For an operator A, JCA denotes the null of A and RA will denote the range of A.
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3.4 Lemma. Let M1, M2 be measurable B+(3£, 3C)-valued functions

defined on the unit circle and Bochner integrable with respect to Lebesgue

measure p and satisfying

(i) M2 ^ Mx,

(ii) xMi = jvv2,
(iii) there exists a measurable positive scalar-valued function such that

yjM2MlyjM2 £ tpMv

Then the injection map is one-one.

Proof. By (iii) and Theorem 1 of [2], 3l(VMt) 2 ^M^Mf). Now

||O||Mi = 0 implies <bs/M1 = 0 a.e. [p]. Hence ||<f>||Ml = 0 implies

(by/Msy/Mi = 0 a.e. [p]. But $ e L2.m2> 0,/Af2 is bounded giving

<J)jM2 = 0 on closure of tKQMf). This and (ii) implies that ®y/M2 = 0

a.e. p giving \\$\\Mt = 0.
Combining Theorem 3.2 and Lemma 3.4, we obtain:

3.5 Corollary [1, Theorem 1]. Let M2, Mt satisfy the hypotheses of

Lemma 3.4. If' MY is factorable then so is M2.
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