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Abstract. In the study of the structure of the space of bihar-

monic functions it is often necessary to impose some nondegeneracy

condition on the base manifold with respect to quasiharmonic

functions (cf. [2], [4]). For this reason it is useful to introduce various

quasiharmonically degenerate classes of Riemannian manifolds and

to investigate relations among them. This is the purpose of the

present note.

1. Quasiharmonic degeneracy. Let Ä be a noncompact orientable

C^-manifold of dimension m _ 2 with C" Riemannian metric ds2 =

gu dxidxi. The corresponding Laplace-Beltrami operator is

where g = det (g.b) and (gi}) = We call a function u quasi-

harmonic if Aw = const y£ 0, and denote by Q = Q(R) the class of quasi-

harmonic functions u on R normalized by Aw = 1. Such functions are

superharmonic on R.

Following [5], we denote the classes of nonnegative, bounded, and

Dirichlet finite functions by P, B, and D respectively, and we set BD =

B n D. Similarly we write QX (X = P, B, D, or BD) for Q n X. We are

interested in the question as to when QX = 0.

2. Characterization of null classes. We denote by Oqx the class of

Riemannian manifolds R on which QX(R) = 0, and by 0G the class of

parabolic manifolds.

Let G(x, y) = GR(x, y) be the harmonic Green's function on R $ Og,

and set G(x, y) = oo on R e 0G. Denote by dy the Riemannian volume

element (g(y))1'2 dy1 ■ ■ ■ dym.
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Theorem 1. The classes 0QX are characterized in terms of G(x, y) as

follows:

ReOgp   if and only if  j G(x, y) dy = co;

R eOQB   if and only if  a = sup    G(x, y) dy = oo;
xeR JR

(2) r
R 6 OqD   if and only if  b =       G(x, y) dx dy — co;

JRXR

R e 0QBD   if and only if  a = oo   or   b = oo.

3. Proof. Let u e Q(R) and take a regular subregion Q. of R containing

a given point x. Denote by the harmonic solution of the Dirichlet

problem on Q. with boundary values u. By Stokes' formula,

f    [(u(y) - HftjO) A.GnCx, y) - Gn(x, y) A„(u(y) - //£(y))l dy
Jn-s

(3) = - f      [(u(y) - H%,)) * dyGa(x, y)
Jd(l-dB

- Gn(x, y) * du(u(y) - Hfty))],

with P a small geodesic ball about x of radius e. On letting e —> 0, we

obtain the Riesz representation

(4) u(x) = H2(x) + f Gfi(x, jO dy
Jsi

on Q (cf., e.g., [1]). Again by Stokes' formula,

Dn^Gn(; y) dy^j = (n(J"nGn<>> y) dy ■ A*/nGnO> yy dy) dx

(5) /•
=      Gn(x, y) dx dy.

Jcixa
We conclude that

(6) Dn(u) = Dn(H2) +      Gn(x, y) dx dy.
Jnxn

If JH G(x, y) ay exists, then it is of class C2, and

A, f G(x, y) ay = 1
JR

(cf., e.g., [3]). On letting £2 -* P in (5), we obtain

(7) DR([ G(;y)dy) = f    G(x, y) dx dy = oo.
VJjj / Jrxr



1972] QUASIHARMONIC CLASSIFICATION 167

Suppose there exists awe QP. Since u is positive and superharmonic on

7?, h(x) = limn^R H^(x) exists and a fortiori

G(x, y) dy = lim    Gn(x, y) dy = u(x) — h(x) < oo.
Jr n->i? Jn

If w e G\ß, then since |/7"(x)| _ sup8n |w| for every x e Q, (4) implies

IGn('» JO dy ^ 2 sup |w|
n r

and consequently a < oo. If w e QD, then (6) and (7) give b < oo. A

fortiori, if w e ßjBZ>, then a < oo and o < oo.

Conversely let i>(x) = G(x, j) ay. If it is finite or bounded on R,

then v e QP or (27?. If o < oo, then v(x) is finite and (7) implies v e ßZ).

Consequently, if a < oo and b < oo, then p e ß7?Z>.

4. Strict inclusion relations. By means of the characterizations in

Theorem 1 we shall prove:

Theorem 2.   The following strict inclusion relations are valid:

(8) 0G->0 qp Oqbd

Here X-*- Y stands for X g Y, and X-Y means I* Y and Y X.

5. An auxiliary metric. The inclusion 0G c Oqp <= 0QB, 0QP c

0QD, and 0QB U Oqd <=■ Oqbd follow immediately from (2). The sim-

plest example showing the strictness of the inclusion Oa g Oqp is the

Euclidean space Em (m _ 3). To construct examples showing the strictness

of the other inclusion relations, we make the following preliminary

observation.

Take a hyperbolic region S in the z-plane. Denote by Ae the Laplacian

—4d2/dzdz and by G(z, £) the Green's function on S. Let v be a C00

superharmonic function on 5 with Aei; > 0 and suppose that v is a poten-

tial, i.e., the greatest harmonic minorant of v is zero. Let K(z) = Aei>(z).

Consider the Riemannian manifold 7? with base manifold 5 and metric

(X(z))112 \dz\. The Laplace-Beltrami operator A is simply A = A_1Ae.

Thus a function is harmonic on R if and only if it is so on S, i.e., H(R) =

H(S). The volume element dV on R is given by dV(z) = |iA(z) 0*z A o*z.
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In view of v e C°° we obtain on replacing u by v in (3) and letting e -* 0,

v(z) = H%z) + l- f Gn(z, 0 AeK0 dl a dl
2 Ja.

Since v is a potential, we have lim^^ J7„(z) = 0. Therefore

(9) f G(z, 0 dK(0 - r-(z)

and

(10) I     G(z, 0 dV(z) dV(0 = - | r(z) A.ufz) dz a dz.
jrxr 2 jr

6. Example 1.   Let R be as in §5, and choose

(11) S = {0<[z|<l},     v(z) - log(l -log |*|).

Then

(12) Aei.(z) = |z|-s (1 - log |z])-2 > 0

and, for Q(P) = {P < \z\ < 1},

„aw, v _ log (1 - log p) • log M

log p

Since this tends to zero as p —*■ 0, R qualifies as a manifold of §5. By (9)

we have

LG(z, D</K(Q = log(l -log|z|),

which is finite but not bounded on R. This with (2) implies that R $ 0QP

and R e 0QB <= 0QiJZ>.

Similarly (10) gives

G(z, 0 dT(z) dV(0f <
Jrxr

= L f    log (1 - log |z|) • |zr2(log |z|)"2 dzhdz< oo.
2 Jbxr

Again by (2) we conclude that R <£ 0QD. The example (11) thus serves to

show that 0QP g 0QZ> g 0QBi), and 0QB q= 0QZ).

7. Example 2.   Let    be again as in §5 but now choose

(13) S = {0 < |z|< 1},      t>(z) = (1 - \z\fl*.
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Then

(14) Aep(z) = 4-H2 - \z\) |z|-i (1 - \z\)-^ > 0.

Since v vanishes on |z| = 1 and is bounded on R, it is clearly a potential

on R. Therefore R satisfies the condition of §5. By (9), we have

Jr

In view of (2) we conclude that R $ 0QB and a fortiori R $ 0QP. More-

over it follows from (10) that

This with (2) gives R e 0QD    Oqbd. The example (14) thus yields the

relations Oqp g 0QD, 0QB g 0QBD, and 0QD * 0QB.

The proof of Theorem 2 is herewith complete.
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