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A NONARCHIMEDEAN THEORY OF ANALYTIC

CONTINUATION IN SEVERAL VARIABLES

a. i. thaler

Abstract. Recently B. Dwork proved the validity of the

functional equation, conjectured by A. Weil, for a nonsingular

projective hypersurface defined over a finite field. The proof made

use of work of M. Krasner, wherein a uniqueness theorem for an

analog of analytic continuation in ultrametric spaces is proved.

The methods involved give information concerning the behavior

of the undetermined factor ± 1 in the functional equation for such

a hypersurface if one of the coefficients of the polynomial is varied.

In this paper, Krasner's result is extended to a uniqueness theorem

for analytic elements in n variables. This result will be applied to the

Weil zeta function in a later work.

1. Preliminaries. Let ft be an algebraically closed field complete with

respect to a nonarchimedean rank one valuation x —*■ ord x with value

group where R denotes the additive group of real numbers. We

shall assume that © is dense in R. For b e R, we define r6 = {f eft:

ord £ = b}. Let D denote the valuation ring of ft, O = U6ao r„, and let

<B denote the ideals of nonunits in D, <B = U6>o Yb. It will occasionally be

convenient to use the notation |x| = p~0Td where p is the characteristic

of the residue class field of ft, denoted by k.

The following definition is due to Krasner [2].

Definition 1.1. Let D be a subset of the "projective field" ft* =

ft u {oo*}. We say that D is a quasi-connected domain of ft* if, for every

a e D n ft, the following property is satisfied: for every f e D, the set

of real numbers

Hs = {\x - a| :x e ft - D, \x - a| < |f - a|}

is a finite set.

Lemma 1.2. Let £a„ • • •, Cr De distinct elements ofD; then there is

an element £ofD such that |f — ̂ | = 1 for i — 1, 2, • • • , r.

This is a special case of Lemma 1 of [3], and so we may omit the proof.
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Proposition 1.3. Let /(x) eD[x],f ^ 0. For any positive number d,

the sets

Ws(f) = {*e©:|/(f)| > <5},     Wf(f) = {|eO:j/(D| ^ 0}
are quasi-connected.

Proof. Let/(x) = (x - • • • (x - Q^(xp\ - DCl ■1 ■ (*ä - l)c«,

£i> $2> "' - > £r distinct elements of O, p\, ß2, • ■ • , ßs distinct nonunits

in £>. For <5 ̂ 0, let 3i}, 3if be sets of real /--tuples defined by

31, = {(A, ••• ,dr):d?---6?> <5,0 5j d, < 1,t = 1, • • •, r},

5lf = {(A, ■ • • , «5r):^ v -3,«' > 3^0 < 3, <J U = J, • • • ,r},

and, for any r-tuple (du • • ■ , 4), let Wf^, • • • , 3r) = {f e O: | f - £,| ^
3^ i = 1, 2, • • • , r). Since, as is clear from Definition 1.1, a disk from

which finitely many (open or closed) disks have been removed is a quasi-

connected domain, it follows that, for any r-tuple (dx, • • • , <5r), the set

W(dx, • • • , dr) is quasi-connected.

Let us consider the collections

Cs = {W(dx,---,ör):(öx,---,ör)e3lö},

Cf = {W(dx,       6r):(\, ■ ■ • , dr) e 3if}.

It is noted that, for any 6, Gö is a subfamily of Cf, and that Ct (respectively

Cf) is an empty family of sets if 3 ^ 1 (respectively 3 > 1). We now

recall that, in the terminology of Krasner, a family F of sets is said to be

linked if any two sets A, B of F can be joined by a chain, that is to say a

finite collection A = C0, Cx, ■ • ■ , Cm = B of sets of the family such that

any two consecutive terms C{ x, Ct are nondisjoint, and we assert that the

collections C,,, Cf are either empty or linked families of quasi-connected

sets. In fact, we are able to prove a stronger statement, namely that for

any choice of 3 in the closed unit interval, there is an element f e O

common to each member of the family Cf. For, according to Lemma 1.2,

an element | of D may be chosen satisfying | f — t(\ = 1, i = 1, 2, ■ ■ • , r,

and therefore, since (dx, • • ■ , dr) e Cf entails 3; £j 1 for all i, the assertion

follows. But then, by a theorem of Krasner in the cited reference, the sets

öweCa Uipeef W are quasi-connected, for any nonnegative 3 (note

that the empty set is trivially a quasi-connected domain). Our desired

result then follows from the observations that these latter unions are the

sets Ws(f) and Wf(f), respectively.

Definition 1.4. Let V be a subset of SKn, j a positive integer, 1 <

j <i n, and (a,, a2, • ■ • , an^x) e Ä"~*s The symbol VU)(a1, ■ • ■ , an_x)

denotes the subset of ft defined by

VU)iax, ■■ , an_x) = {a e ft: (ax, ■■■ , sH, a, aj} ■■■ , an_x) e V).
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If V has the property that, for each integer j, 1 £jy 5j n, and for each

(n — l)-tuple (au • • •, an_x) e ft"-1, the set VU)(au ■ ■ ■ , an_x) is a quasi-

connected domain, the set V is said to be axially quasi-connected.

Corollary 1.5. For R(X1, X2, ■ • ■ , Xn) e D[XX, X2, ■ ■ • , Xn] let

W = {<&, St, • • *, f J e DB:ord f„ • • •, f J = 0}. Then the set
W is axially quasi-connected.

Proof. Let j be any integer between 1 and n, and let R*(x) e ü[x] be

defined by

Rj(x) = R(au ••,       x, a3, • • • , an_x),

where ax, • • • , an_x are arbitrarily chosen elements of D; then

WU)(a1, ■ ■ ■ , an_x) is either empty or equal to (R*), and the preceding

proposition applies.

2. Uniqueness theorem. In this section, a uniqueness theorem for

analytic elements in several variables, generalizing the one-variable

theory of Krasner, is proved. We do not claim to have a completely

satisfactory generalization of Krasner's concept of a quasi-connected

domain; in particular, while it is not sufficient only to assume that a

subset of 51" be axially quasi-connected, it seems as though our definition

of W in the statement of the theorem is overly restrictive. However, it is

only regions so defined with which we will be concerned in [4].

It is necessary to introduce some new ideas before the uniqueness

theorem is stated.

Definition 2.1.   Let f = ,       n = (nx, rj2, ■ ■ ■ , n„) be

a pair of elements of 5\"; we say that f is directly axially joined to rj if

= rjj for all but possibly one of the indices /' = 1, 2, • • • , n. If U is a

subset of S\", and if £, n are elements of U, we say that | and n are U-

axially joined if there is a sequence n = £<0), • • • , £W) = £ with the

property that, for i = 0, 1,2, • • •, N, £{i) e U, and, for / = 1, 2, • ■ • , N,

f(!_1> is directly axially joined to

It is clear from the definition that "is t/-axially joined to" is an equiva-

lence relation.

Definition 2.2. For U <= w c S\n, we define the axial join of U in W,

W, by
W = {£ e W: £ is IF-axially joined to an element of U}.

Proposition 2.3. // R(XX, X2, • • • , Xn) e D[XX, X2, ■ ■ ■ , Xn],

ordi?(0,0, • • • , 0) = 0, let W = {(£,, • ■ • , f„) eD":ord R(£u •••,?„) =

0} and let />,, p2, ■ • • , pn be a set of positive numbers such that U =

rp X rpi> x • • • X Tp is not empty. Then, if W denotes the axial join of

U in W, W' = W.
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Proof. If n = 1, any two elements of ft are directly axially joined,

and so W = W trivially.

Assume the validity of the proposition for polynomials in n — 1

variables with coefficients in O, n ^ 2, and let ■ • • , y>n) e W7. We

shall construct an element fa, r\2,---, rjn) e £/ which is IF-axially joined

to (Vi, n, '- • > VÜ-
Consider the image i?(Ax, • • • , A'J of ^CX,, • • • , A"J under the residue

class map: it follows from the definition of If that, if f denotes the residue

class of Si under reduction mod ^B, (£,,•••, f„) is an element of W if

and only if R(£ly • • ■ , |„) 0. Let the polynomials Ä', R'0 in be

defined by

R'0(Xn) = R(0, 0, • • • , 0, Xn),      R'(Xn) =         y„ • • •, y^x, An);

since R'o(0)R'(ipn) 5^ 0, the product of these two polynomials is not the

zero polynomial. But is infinite, so the existence of an element r\ of O

with the property R'fa)R'0fa) ^ 0 is guaranteed.
Let AT2,    •,        = rg> • • •,        »?) and put If* =

ft,   ••, f«_0 e O^rordiv*^, *„ f^j) = 0}; then
ord R*(0, 0, • • • , 0) = 0 and (y,, y>2,---, ipn-\) e and therefore, by

the induction hypothesis, (y>x, y2, • • • , W-i) is If *-axially joined to an

element fa, r\2, ■ ■ ■ , r)n_x) e^x^x • • • X r, . Thus, if we

choose any element rjn of TPn, the conclusion follows from the fact that

(ipu ft, • • • , xpn^, rj) and fa, ft, • • • , y„) are directly axially joined,

Oh. %,'••» fe*.»?) and fa, rj2, ■ ■ ■ , are axially joined, and

(fi, St,'-',        e ^* if and only if (|„ f,, • • • , £n_x, n) e W.

Remark 2.4. If S_ = (ix, S*,' •', §J, V = fa, % • V,»?„) are
elements of On, and if ft = / = 1, 2, • ■ • , n, then | e If if and only if

■new.

Theorem 2.5. For R(Xx, X2, ■ ■ ■ , Xn) e D[A,, Z2, • • • , XJ,

(0, 0, • • • , 0) g T0, let W = • • • , Sn) e O": ord „ • • • , f „) = 0},

to {fJXx, Xt, " ', Xn)}, {gm(X1, Xt, " ', Xn)}, m = 1, 2, 3, • • • ,
be sequences of rational functions defined on W and converging uniformly

to functions f (Xx, X2, • • • , Xn) and g(Xx, X2, • • ■ , Xn), respectively, on W.

Suppose, for some set of positive numbers p1; p2, • • • , pn, the set U =

rpi x rP2 x • • • X TPn is not empty and f(Xx, X2, ■ • ■ , Xn) =

gOcu Xt,"', Xn) on Ü. Then f(Xu X2, ■ • • , Xn) = g(Xu X2, ■ ■ • , Xn)
identically on W.

Proof. Let £ be any element of W. Then, by Proposition 2.3, there is

an element n of U and a sequence r\ = f(0), • • • , £<A> = S of ele-

ments of W such that adjacent members of the sequence are directly

axially joined. The theorem will follow from construction of a sequence
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H<0), H(1), • • • , S  ' of sets, each of which satisfies the conditions:
(1) S<!> <= W.

(2) For any choice of;', 1 <j j 5j n, and any element £ = |s, • • •, f „)

of S(i), the set

has |3 as a limit point.

(3) f«> e E<*>.
(4) If (flf •••,£„)€ 3«>, then/Cf,, • • • , fj = gfa, • • • , fj.
Such a sequence is constructed inductively. If the initial member H<0)

is set equal to U, it follows from the hypothesis that S<0) satisfies the four

conditions.

Now, let 0 ^ i < N, and suppose the set H(1) has been chosen in such

a manner that conditions (l)-(4) are satisfied. Let

Hc+i) = U m> Si, • • • , ff,_f. *«.

for some     fa, ■ ■ ■ , S„ ■ ■ ■ , fj e 3«>}.

It is obvious that S(!+1) so defined satisfies the first of our conditions.

Suppose rp = fa, • • • , yn) e H<<+1); if j is any integer, 1 5jy 5j n, we

must show that H^11 has rpj as a limit point. But ip e H<<+1) implies the

existence of an integer/', 1 5j / 5j n, and an element S = •••,£„)£

S('' such that ^ = Si if ' # /'• If / = Remark 2.4 implies that all

elements congruent to f} mod *B are in S^1', and so ft is certainly a

limit point of this latter set. On the other hand, if j' ?= /, we use the fact

that || is a limit point of HjJ». Thus, we can choose an infinite subset

{|3    / = 0,1,2, • • • , of SfJt such that as /-* oo, and such
that these elements are all in the same residue class mod SJ3; but then, if

we define $x = (<£;1, <j)l2, ■ ■ ■ , <f>ln) by

<Pu = V/ if/—/,

if'-/,
= |j otherwise,

Remark 2.4 implies that </>j e H(i+1) for all /, and, as / -> oo, </> a -+ ^ = yi,-,

from which it follows that condition (2) is satisfied by the set H(i+1).

Condition (3) is fulfilled since      e E{i) and Sm, are directly

axially joined.

Finally, if tp = fa, • ■ • , y„) e H(i+1), we choose | = (f^ • • • , S„) and
the integer y such that yf = i{ if i    j. Let

= *(Vi> Va,'- - > Vi-i> ̂ . Vm, " ' > f*>>

and let       . = {t^.: ord RVij(r)j) = 0}. Proposition 2.3 tells us that

WvJ is a quasi-connected domain; but, by the induction hypothesis,
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f(gu • • - , Sf-i, X, S'i+i, • ■ • , £„) is identically equal to

g(£i, ■ • ■, f j-i, X, tM, ■ ■ ■, |„)
on the set E^; since this subset of WWii has a limit point in itself, applica-

tion of the one-variable uniqueness theorem proved by Krasner gives the

result that

fiMi>      j if—it X, Sj+i>      , fn) = g{£i,      , fj-i,     fj+ij      5 f«)

identically on        This proves our theorem.
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