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BOUNDED PROJECTIONS ON FOURIER-STIELTJES

TRANSFORMS

CHARLES F. DUNKL AND DONALD E. RAMIREZ1

Abstract. We study certain algebraic projections on the meas-

ure algebra (of a locally compact abelian group) which extend to

bounded projections on the uniform closure of the Fourier-Stieltjes

transforms. These projections arise by studying a Raikov system of

subsets induced by locally compact subgroups. These results gener-

alize the inequality 11/2^11 o, ^ II/* II oo (where fi is in the measure

algebra, /ud is the discrete part of ft, and \\fi\\ao is the sup-norm of

the Fourier-Stieltjes transform).

Here H will be a locally compact abelian (LCA) group. The group H

with the discrete topology is denoted Hd. This is the same as giving H

the topology induced from declaring the subgroup G = {0} H to be

open. The space of finite regular Borel measures on H is denoted M(H).

For fj, e M{H), let p,d denote the discrete part of fx. The ring homomor-

phism /lc i—» fj,d maps M(H) onto M(Hd), and this map is norm-nonincreas-

ing in the measure norm; that is, H^H ^ H^H, p, e M{H). For p, e M(H),

we let ß denote the Fourier-Stieltjes transform of pt; that is

JH

y £ H (the dual of H). In two previous papers [2], [3], we showed (in a

more general setting) \\ßd\\x ^ ||/<IL, fi e M(H) (where IHL denotes

the sup-norm). This further implies that JL(H) = JLC(H) © JLd(H),

where JL(H), JLC(H), and JLd(H) are the sup-norm closures on H of the

Fourier-Stieltjes transforms of measures from M(H), MC(H) (the space of

continuous measures), and M{Hd) respectively. Let A denote the maximal

ideal space of M(H), and let kH denote the A-closure of ft in A. (Recall

H <= A under the identification map from H to A by 7r7(/tt) = ß{y),

yeH, fie M(H).) We call the set kH\H the fringe of H. The result
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IIA;IIoo = II/*IIoo C« e M(H)) implies that the fringe of H contains a homeo-

morphic copy of the Bohr group ßH of H (under the map %^>irx from

ßH to A given by irx{[j) = $H % dpd, p. e M(G), % e ßH).

The setting in this paper is as follows. We let H be an LCA group with

topology '£>f/, and G a subgroup of H which has an LCA group topology

7jG such that the injection (G, 75G) —»■ (H, Tjh) is continuous. For example,

suppose G is the image under a continuous monomorphism of an LCA

group. We let HG denote H with the topology induced by declaring the

subgroup G with the TSG-topology to be open. We will assume that G is a

nonopen subgroup of H so that H 5^ HG topologically.

We now will define the natural projection P: M(H) —*■ M(HG) by

utilizing a Raikov system of subsets of H. (For the basic facts concerning

Raikov systems see [5].) Let $ denote a family of c-compact subsets of

H such that: (1) if A etf, B is cr-compact, and B <=■ A, then BeJ,

(2) if L4„}«=i <= J, then [Jn=iAne3r, (3) if A, Be J, then A + BeJ,
and (4) if A e & and x e H, then x + A e 3r. Such a family of subsets of

H is called a Raikov system. We choose & to be the Raikov system

generated by the family of compact subsets of G.

Let R be the set of measures /u e M(H) such that is concentrated on

some elements of 5% and let I be the set of measures (i e M(H) such that

1^1 (A) = 0 for all A e 3r. Then I is a closed ideal in M(H) and R is a

closed subalgebra of M(H). Furthermore, M(H) = R © I (see, for

example, [5, p. 151]). Now R can be identified with M(HG), and thus the

natural projection P:M(H) —> M(HG) is induced by the given direct sum.

For p e M(H), we write fi = /uG + [tj where p,G e M(HG) and p,j e I.

Thus Pp. = fiG, p, e M(H). Observe that Pis a norm-bounded projection;

that is, \\P/n\\ ̂  11,1*11, fi e M(H). Our goal now is to show

IKP^flL^PIL, peM(H).

Let d>:HG->H be the identity map and <j>:H —>■ HG the adjoint map

(an injection). In an earlier paper [4], we showed for any continuous

homomorphism tt:G1 —»- G2 (Gx, G2 LCA groups) that 77 is open if and

only if fr:o\—(the adjoint map) is proper (the inverse image of a

compact set is compact). Thus since d> is not open, o? is not proper. The

map <f> induces a continuous homomorphism <b*:M(HG) —► M(H). Since

d> is one-to-one, <pH is dense in HG. Indeed for any compact K er H,

<j>(H\K) is dense in HG. For p e M{HG), \\fi\\m is the supremum of |/2|

over either $H or HG. (We will identify <£/V and ft as subsets of HG when

convenient.)

For an LCA group L, we let P(L) denote the space of continuous

positive definite functions on L; we let PC(L) be those feP(L) with

compact support.
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We will denote the Haar measure on HG by X. (The measure A restricted

to G is the Haar measure on G.)

Proposition 1. Let fePc(HG) and let dp, = f dl. If gePc(H), then
g * fj, {convolution in M{H)) is in PC(H).

Proof. Since /e Pc(Ha), f e L1(HG) by the inversion theorem [7,

p. 22], and/^ 0 by Bochner's theorem [7, p. 19]. Thus for y e H c HG,

fi(Y) = SHfdfi = SIla yfdX =f(y) ^ 0.
Since g and p. have compact supports, g * /* is a continuous function on

/7 with compact support. Finally, g * p. is positive definite since (g * pY =

gfi ^ 0 on H. □
An LCA group L is amenable, and thus satisfies the condition of

Godement: the constant function 1 can be approximated uniformly on

compact subsets of L by functions of the form k * Jc, where k is a contin-

uous function with compact support and Jc(x) = (k(—x))~, x e L. (See

[6, p. 168, 172].) Thus we have:

Proposition 2. Let L be an LCA group and K L a compact subset

of L. Given e > 0, there is p ePc(L) such that p(0) = 1 and \p — 1| < e

onK.

Proposition 3. Let K be a compact subset of HG, and let U be a

relatively compact neighborhood of 0 in HG. Then there is a neighborhood

VofO in H such that (x + V) n K <= x + V for all x e K.

Proof. Since K is compact in HG, K — K is also compact in HG;

and the induced topology on K — K from H agrees with the /7G-topology

on K — K (since compact topologies are minimal Hausdorff). Thus

there is an /Y-open neighborhood of 0, V, such that V n (K — K) <=

U n(K- K). Thus for jc e K, (x + V) n K <= x + (V n (K - {x})) <=■

x + (V n (K - K)) c x + (u n (K - K)) <= x + u. □

Proposition 4. Let f e HG, K a compact subset of HG, and e > 0 be

given. Then there exists y e H such that \y — || < e on K.

Proof. Recall that $H can be identified with H, and it is dense in HG.

Finally, the topology in HG is the compact-open topology. □

Theorem 5. Let P:M(H) ~> M(HG). Then «(/»X ^ \\ß\\m,
LI g M(H).

Proof. Let p # 0 be in M(H), and let f e HG. Write p. = p.G + p-i

where £ M(HG) and /z, £ / using the previously described Raikov

system. We will show |/2G(f)| ^ fl/*ll oo-



1972] PROJECTIONS ON FOURIER-STIELTJES TRANSFORMS 125

We may assume spt iiG (spt denotes the support) is compact in Ha.

By Proposition 2, there is p ePc(HG) such that p(0) = 1 and \p — 1| <

e/VH on spt/*G.
Since (sptp) = 0, we may assume spt iiz n spt/? = 0. Since p

is uniformly continuous in the //G-topology, there is a /YG-open neigh-

borhood of 0, U, such that for x e 77G and j> e £/, |/?(x + y) — p(x)\ <

e/H/tll. Let A= —K be a compact subset of HG containing spt/? and

spt fia. By Proposition 3, choose V to be an /Y-open neighborhood of 0

such that V = — K and (x + F) n K <= x 4- C/ for all x e A; we further

assume that (spt /> + V) n (spt /*/ 4- K) = 0.

Now choose y e H by Proposition 4 such that |y — || < e/||^|| on AT;

and choose gePc(H) with sptg c£ F, g ^ 0, and jugdX = ii For

any x e A, |(g */> <tt)(x) - />(x)| = |JVg(y)/K* - y) <tt(y) - p(x)\ =
\Sug(y)(p(x -y)~ P(x)) dl{y)\ < el\\n\\ (since V n (x - A) a £/, x e

spt /?). Thus letting f = g * p dX, spt/ <= F 4- spt/? and /e PC(H) (by

Proposition 1). Also /(0) < /?(0) 4- e

spt [ij = 0. For x e spt /eG,

1 4- e and spt / n

And
!/(*) - II ̂  1/00 " />(*)! 4" \p(x) - 1|< 2e/|H

I      -    yfdfi ^       I (z>G -     y dp,

+ ydp0- yfdpA 4- yfdp,
jhg Jh       I \Jh

< (e/IHI) \\f*o\\ + O/IH) WfiaW + 0

< 3e.

Now \$Hyfdp\ ^/(0) \\fiW«, < (1 4- e/VU) U/2H«, (since y/ is positive
definite).

Summarizing, given | e >YG,

And so ioll. ^

< (1 + e/11/iH) H/2II

"Hoc- □

I 4- 3s

+ 3c < H/2II« + 4e.

Corollary 6. Le? JG(/7), JL(Hg) and 3 denote the uniform closures of

the Fourier-Stieltjes transforms of M(H), M(HG), and I respectively. Then

JL(H) = JL(HG) © 3.

Corollary 7.   If fi e M(H) and ß 6 JL(HG), then p. e M(HG).
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Corollary 8. Let Ha be embedded in kH {the maximal ideal space

of JL(H); equivalently, the closure of H in A), by y i-> it y from HG to kH

where Try(p) = fla(y) (fi e M(H)). Since rry(p) = 0 for ii e Ll(H) (recall

G is nonopen in H), -rrye kH\H (the fringe of H). In particular, for

H e M(H), \\ßG\\x - lim sup \\ßG\\x ^ \\ß\\x.

These corollaries follow from the inequality H^ollo, ^ \\ß\\ (p. e M(H)).

The proofs are discussed in a more general setting in [3]. For G = {0}

(and thus HG = Hd), Corollary 7 is due to E. Hewitt for H with a restricted

hypothesis and to W. Eberlein in general. A reference for these facts, plus

a different (although closely related) direct sum decomposition, is [1].

Some interesting examples of LCA groups H with a nonopen subgroup

G are: (1) H nondiscrete and G = {0}, (2) G noncompact and H = ßG

the Bohr compactification of G, (3) G = R (the real numbers) and H a

compact solenoidal group, and (4) certain local direct product groups

embedded in the appropriate complete direct product groups.
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