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CONTINUITY AND LINEARITY OF CENTRALIZERS ON
A COMPLEMENTED ALGEBRA1

PARFENY P. SAWOROTNOW AND GEORGE R. GIELLIS

Abstract. Let A be a semisimple complemented algebra and

let T be a mapping of A into itself such that either T(xy) = xTy or

T{xy) = (Tx)y holds for all x, y e A. If Tis denned everywhere on

A then T is a bounded linear operator.

1. A right centralizer on an algebra A is a mapping T of A into A such

that T(xy) = xTy for all x,y e A. A left centralizer is a mapping T:A —>- A

such that T(xy) = (Tx)y for all x, y e A. This terminology is somewhat

different from the terminology of [5] and is due to B. lohnson, who

developed the theory of centralizers in [3] and was able to show that for a

certain class of Banach algebras centralizers are always linear and

bounded. In [4] he showed that this is the case when the algebra has a

certain type of bounded approximate identity.

The purpose of this paper is to extend these results of Johnson to the

case of complemented algebras. Results of [4] are not applicable to our

case. In fact the authors are convinced that Johnson's condition on

existence of a certain type of approximate identity in the case of comple-

mented algebras would be equivalent to the assumption of finite-dimension-

ality of the algebra.

Inasmuch as every proper right 7/*-algebra [8] is a complemented

algebra, we have extension of Johnson's result to all types of 7/*-aIgebras,

and in particular, to the algebra of Hilbert Schmidt operators.

We developed our theory for right centralizers but it is obvious that the

same theory could be developed for left centralizers.

2. In this section we recall some basic definitions and facts from the

theory of complemented algebras. For a more complete background the

reader is referred to [6] and [7].
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A complemented algebra is a Banach algebra A with a Hilbert space

norm such that the orthogonal complement of a right (left) ideal is again a

right (left) ideal. We say that xl e A is a left adjoint of x e A if (xy, z) =

(y, xlz) holds for all y, z e A. A left projection is a nonzero member e of A

such that e2 = el = e. Note that the inequality ||ex|| ^ \\x\\ holds for

each x e A and any left projection e in A (in this case (ex, x — ex) = 0

and so ||x||2 = ||ex||2 + \\x — ex ||2). Projections e1,e2 are said to be doubly

orthogonal if e1e2 = e2e1 = 0. A primitive left projection is a left pro-

jection which cannot be written as a sum of two doubly orthogonal left

projections. Each left projection can be written as a sum of a finite number

of mutually doubly orthogonal primitive left projections. The right quasi-

inverse of a e A is a member b of A such that a + b + ab = 0 [2]. If a

Banach algebra is semisimple then each nonzero ideal contains an element

which has no right quasi-inverse [2]. A semisimple complemented algebra

A has the property that Ax = 0 implies x = 0, i.e. in the terminology of

Johnson a semisimple complemented algebra is faithful. If e is a primitive

left projection and A0 is the smallest closed two-sided ideal containing e

then A0 is a simple algebra.

3. We will need a few lemmas from the theory of complemented

algebras. Let A be a fixed semisimple complemented algebra.

Lemma 1. Let e1, e2 be primitive left projections belonging to the same

minimal closed two-sided ideal A0 in A. Then the subspaces e^e, are one-

dimensional and the subspaces e1Ae1, e2Ae2 are isomorphic to the complex

field. Also there are elements etj e a^ej such that eu = et, e\j = eH and

eueik = eaf°r all Uj, k in the set {1,2}.

Proof. First part of the lemma follows from [6, Lemma 7] and the

fact that e^ej = etv40e3. The matrix units e(j can be selected as follows:

first set en = ex, e22 = e2 and take e12 e exAe2 so that ||e12|| = ||e2||; then

set e21 = e\2. The equalities e^e^ = eik are then easily verified (compare

with pp. 381, 382 of [1]).

Lemma 2.   Each nonzero left ideal L in A contains a left projection.

Proof. We use the technique of [6]. Let a be a member of L which has

no right quasi-inverse. Then —a is a relative identity of the proper right

ideal R = closure of {ax + x | x e A}. Write —a = e + u with e e Rv,

u g R. Then [6, Lemma 2], e is a left projection and eu = 0. It follows

that e = e(e + u) = e(—a) is a member of L.

Corollary.   Every left ideal in A contains a primitive left projection.

Lemma 3. There exists a family {ex}xeT of primitive left projections such

that A = 2«er dex and (Aex, Aeß) = 0 if a. ^ ß for some a, ß e V (members

of {ejagj, do not have to be doubly orthogonal).
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Proof. It is sufficient to consider a maximal family {ej of primitive

left projections such that (Aex, Aeß) = 0 if a ^ ß.

Corollary. If x e A is such that ex = 0 for each primitive left pro-

jection e in A then x = 0.

Lemma 4. Let e1 be a primitive left projection in A and let a e exA.

Then there exists a left projection f e A such that af = a.

Proof. Let A0 be the smallest closed two-sided ideal containing e

and let / be a left projection in the left ideal Aa = Aexa = A0exa. Then

/ = xexa for some x e A and there is a primitive left projection e2 in A0 such

that e2f 0. Take e12 as in Lemma 1 above. Then e12f = e12xexa = Xexa

for some nonzero complex number X (since exAex is isomorphic to the

complex field). Then a = exa = X~xex2f and so af = a.

Lemma 5. If a, b e eA for some primitive left projection e then there exists

a left projection f such that both af = a and bf — b.

Proof. Let /,, /2 be left projections such that afx = a, bf2 = b. Let

ex, ■ ■ ■ , en,en+1, ■ ■ ■ , em be primitive left projections such that/, = 2?=ici>

fz = 2n=n+i ei- Then the subspaces eiAe} are one dimensional and so the

algebra A' generated by elements of the form eixej, xeA, is a finite-

dimensional left J¥*-algebra (one can define a left r7*-algebra in the same

way that a right /7*-algebra was defined in [8]). It is then easy to see that

A' has an identity / and fl = /. It follows then that af = afxf = afx = a

andbf=bf2f=bf2 = b.

4. Now let T be a right centralizer defined everywhere on A. Then T '\%

homogeneous [3, Lemma 1, p. 307], i.e. T(Xx) = XTx for all xeA and

each complex number X. Our aim now is to show that T is a bounded

linear operator. This will be done through several lemmas.

Lemma 6.   T is linear on eA for any primitive left projection e in A.

Proof. We need only to establish the additivity. Let x, y e eA and let

/ be a left projection such that xf = x, yf' = y. Then T(x + y) =

T((x + y)f) = (x 4- y)Tf= xTf+ yTf= T(xf) + T(yf) = Tx + Ty.

Lemma 7. If a complemented algebra A has a left identity i then A is

finite dimensional. The same is true if we assume that A has a right identity.

Proof. First note that the left identity / is a left projection and so

i = 2"=i for some mutually doubly orthogonal primitive left pro-

jections ex, ■ ■ ■ , en [6, p. 50]. Then A = e^A and so it follows from

Theorem 1 of [7] that A is a left 77*-algebra. But then A = 2« e^e,- is at

most n2-dimensional.
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Lemma 8. Each infinite-dimensional semisimple complemented algebra

A contains an infinite family of mutually doubly orthogonal {primitive) left

projections.

Proof. Let A be a maximal family of mutually doubly orthogonal left

projections. If A is finite, say A = {ex, e2, • • • , en}, then e = 2<=i et- is

also a left projection. It follows from Lemma 7 that there exists a e A

such that ae ^ a. Then b = ae — a belongs to the left annihilator l(R)

of the right ideal R = 2"=i e(A and so l(R) ^ (0). Then as in the proof of

Lemma 5 of [6] one can show that Rv contains a (nonzero) left projection.

This would lead to a contradiction with the maximality of A.

Again let A be a semisimple complemented algebra and let T be as

above.

Lemma 9. The restriction of T to eA is a bounded operator, where e is

any primitive left projection in A.

Proof. Assume that Tis not bounded on the unit sphere of eA. Then

there exists a sequence {xn} of members of eA such that \\xn\\ ^ 1 and

||7x„|| ^ n2 for all n. For each n let yn = «_1x„. Then ||y„|| ^ l/n and

l|7>„ll-°°.
Now let A0 be the smallest closed two-sided ideal containing e. Then

eA = eA0 is infinite dimensional (otherwise 7* would be bounded on eA)

and so there exists a sequence {ej of mutually doubly orthogonal

primitive left projections such that ex = e. Also one can select as in [6,

Theorem 3] a set {e^} of members of etA0ej such that eu — eu e\t = eH and

ei}em = eik for all i, j, k. Then the series 2<=i eaJ< converges to some

member y of A0 and we have elny = yn for each n. It follows then that

l|7>JI2 = \\elnTy\\2 = (elnTy, elnTy) = (Ty,enTy) = \\enTy\\2 ^ \\Ty\\
which contradicts the fact that \\Tyn\\ -*■ co.

Lemma 10.   T is additive on A.

Proof. lfx,y e A and eis any minimal left projection then eT(x 4- y) =

T(ex + ey) = T(ex) + T(ey) = e(Tx + Ty) (because of Lemma 6 above).

Thus T(x + y) = Tx + Ty.

Corollary.   T is linear on A.

Lemma 11.   T is bounded on A.

Proof. It is sufficient to show that the graph of T is closed. So let

{*„} c A and x, y e A be such that xn -* x and Txn —>- u. If e is any

primitive left projection then exn -> ex and T(exn) = eTxn —> eu and we

can also conclude that T(exn) tends to T(ex) = eTx (since T is bounded

on eA). Thus eu = eTx for each primitive left projection e and this implies
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that u = Tx. It follows from the Closed Graph Theorem that T is

bounded.

Summing up and taking into account the fact that the same theory can

be developed for left centralizers we state our main result.

Theorem. A right centralizer defined everywhere on a semisimple

complemented algebra A is a bounded linear operator on A. The same is

true for a left centralizer defined everywhere on A.

Added in proof. It was pointed out to the authors that B. E. Johnson

and A. M. Sinclair established continuity of an additive centralizer defined

on a semisimple Banach algebra [Amer. J. Math. 90 (1968), 1068-1073].

In the present paper the authors do not assume additivity.
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