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CONTINUOUS FUNCTIONS OF HERMITIAN OPERATORS1

p. r. halmos

Abstract. Theorem: every normal operator is a continuous

function of a Hermitian one. Corollary: every normal operator on

a separable Hilbert space is the sum of a diagonal operator and a

compact one.

Theorem. Every normal operator is a continuous function of a

Hermitian one.

Corollary. Every normal operator on a separable Hilbert space is the

sum of a diagonal operator and a compact one.

Any two commutative Hermitian operators are Borel functions of some

Hermitian operator; the version of the theorem in which "continuous"

is replaced by "Borel" is old. Both the Borel and the continuous versions

extend to countable sets of commutative Hermitian operators, with no

additional effort. The present version is an easy consequence of well

known Hilbert space techniques, together with an elegant fact of general

topology. The result, with a similar but different proof, is implicit in a

construction of Schwartz [6, pp. 15-16]. Much is known about normal

operators, but not everything. The theorem is presented here in the hope

that it may yield some new information. The basis of the hope is the

derivation of the corollary from the theorem.

The version of the corollary in which "normal" is replaced by

"Hermitian" is the Weyl-von Neumann theorem; till quite recently the

extension to the normal case was an open problem [4]. The first solution

is due to I. D. Berg [1]. The proof below is shorter, and it may perhaps

be considered more translucent.

Proof of the theorem. Every compact metric space is a continuous

image of the Cantor set [5, §41, VI]. If, in particular, A is a non-empty

compact subset of the complex plane and Y is the Cantor set in the unit

interval, then there exists a continuous function cp from Y onto A. The

elegant fact from general topology enters here: it is the existence of a

Borel cross section. That is: there exists a Borel function ip from A into T

such that the composition cp o y> is the identity on A [5, §43, IX]. (Short
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proof for the case at hand: for each z in A, let tp(z) be the infimum of the

numbers x in T for which cp(x) = z. If zn -*■ z, then the continuity of 99

implies that the limit of each convergent subsequence of {y(z„)} is greater

than or equal to ip(z). It follows that y(z) ^ lim infn y>(zn), so that ip is

lower semicontinuous, and therefore of Baire class 1.)

Suppose that li is a positive finite Borel measure with support in A,

and write v = li° yi-1 for the induced measure in T. The mapping TTrom

U(v) into L?(ju) defined by Tg = g ° y is an isometry. (This is standard;

all that is needed to verify it is to look at the expressions for \\g\\2 and

||7g||2 and to recall the way to change variables in Lebesgue integrals

[2, §39].) The isometry Tmaps L2(v) onto L2(p); indeed the inverse of T,

which in this situation is the same as the adjoint of T, is defined by

T*f = f°cp. Since 99 o %p is the identity on A, the equation TT*f = f is

obvious. Since y> ° 99 is, in general, not the identity on V, the equation

T*Tg = g is true for a different reason; it follows from the isometric

character of T.

The position operator on L2(ii) (/(z) i-> zf (z)) is the transform by T*

of multiplication by 99 on L2(v). Proof: (7/(99 • T*f))(z)=(T(cp-(f ° co)))(z)

= ((<?> • (f° <p)) ° v)(z) = <p(y(z)) ■ f (<p(v>(z)))-
The spectral theorem says that every normal operator is the direct sum

of position operators [3]. More precisely: to within unitary equivalence

every normal operator A can be obtained as follows. Fix a non-empty

compact set A in the plane, let 11 vary over an arbitrary set of positive

finite Borel measures in A, and form the direct sum of the corresponding

position operators. As 11 varies, v varies. The direct sum of the corre-

sponding position operators (g(x) 1—> xg(x)) on the L2(r)'s is a Hermitian

operator B (because F is a subset of the real line). Since A = cp(B), the

proof of the theorem is complete.

Proof of the corollary. In view of the theorem, it is sufficient to

prove that if B is a Hermitian operator on a separable Hilbert space, and

if 99 is a complex-valued continuous function on the spectrum of B, then

<p(B) is the sum of a diagonal operator and a compact one.

By the Weyl-von Neumann theorem, B = D + C, where D is diagonal

and C is compact. Extend 99 to a continuous function (into the complex

plane) on a compact set that includes the spectra of both B and D. The

Weierstrass approximation theorem implies that there exists a sequence

{pn} of (complex) polynomials that converges uniformly to (the extended)

99; it follows that pn(B) -* <p(B) and Pn(D) -> 99(D) in the norm. If Cn =

pn(B) — pn(D), then each Cn is compact, and the sequence {Cn} converges

in the norm to a (necessarily compact) operator K. Since cp(D) is diagonal

(any orthonormal basis that diagonalizes D does the same for eachpn(D)),

and since cp(B) = cp(D) + K, the proof of the corollary is complete.
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Remark. Is the theorem true for arbitrary C* algebras? (Question

via J. P. Williams.) The answer is no. Indeed, if A is a non-empty compact

subset of the complex plane, then the identity mapping (z i—> z) on A

is an (obviously normal) element of C(A). The theorem for C(A) would

imply the existence of a Hermitian (i.e., real-valued) continuous function

yon A and the existence of a continuous function <p on y(A) such that

<p(y>(z)) = z for all z in A. Under these circumstances tp is one-to-one,

and, consequently, A is homeomorphic to a subset of the real line. If A

is chosen to make this impossible (e.g., if A is the perimeter of a circle),

then no such xp can exist.
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