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ON ELEMENTS WITH NEGATIVE SQUARES

ralph demarr and arthur steger

Abstract. We prove that in a partially ordered linear algebra no

element can have a square which is the negative of an order unit.

In particular, the square of a real matrix cannot consist entirely

of negative entries. We generalize the well-known theorem that the

complex numbers admit no lattice order.

It is a simple matter, using the Perron-Frobenius theorem [3], to show

that the square of a real (finite) matrix cannot consist entirely of negative

entries. In this paper we give an alternate proof of this result which makes

use only of some elementary order properties. It is appropriate, therefore, to

construct a proof within the more general framework of partially ordered

linear algebras. The main theorem will then be valid not only for finite

matrices but also for (row-finite) infinite matrices as well as operators on a

Banach space [1]. We also generalize a result due to Birkhoff and Pierce

[2] which states that the complex number field regarded as a linear algebra

over the reals admits no lattice order.

Definition. A partially ordered linear algebra (p.o.l.a.) P is a real

associative linear algebra on which there is defined a partial ordering

which satisfies the following conditions (x, y, z denote elements of P and a.

denotes a real number):

(a) if x ^ y then x + z ^ y + z,

(b) if 0 <; x and 0 ^ y then 0 ^ xy,

(c) if 0 ^ a and 0 ^ x then 0 <; ax,

(d) for any x there exist y ^ 0 and z ^ 0 such that x = y — z.

We also make use of the following condition:

(d*) for any x there exists a y such that — y ^ x ^ y.

It is easy to verify that conditions (a), (b), (c), and (d) are equivalent to

(a), (b), (c), and (d*). It can be shown, however, that a stronger set of

conditions is obtained if (d) is replaced by the condition that the partial

ordering be a lattice order. We make use of the standard elementary
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arithmetic properties which flow directly from (a), (b), (c), and (d). We

note explicitly, however, the following:

Lemma 1. Let P be a p.o.l.a., let x, y, u, v eP and let a, ß be real

numbers.

(1) If—u ^ x ^ u and —v 5= y 5= v, then —uv ^ xy ^ uv.

(2) If— a. 5j ß 5j a a«J —« 5j x 5j w,        —aw 5j /3x 5j aw.

Proof. We give only the proof of (1). From 0 5j w — x and 0 5j

r + y, it follows that 0 ^ uv — xy + uy — xv. On the other hand, from

0 5j h + x and 0 5j v — y, we obtain 0 ^ uv — xy — uy + xv. Therefore,

0 5j luv — 2xy, 0 5j uv — xy, and xy 5! wi>. Similarly, from — u 5j

—x 5j w and — v 5j j 5j t>, we obtain —xy 5j uv. Thus, — uv ^ xj 5j uv.

Lemma 2. Let P be a p.o.l.a. and letx,ueP.If0^u,x^u,x2^ 0,

and xu — ux, then nun~xx 5j un for n ^ 1.

Proof. We proceed by induction and observe that the case n = 1 is

included in the hypothesis. The proof is completed simply by multiplying

0 5j un — nun~xx by 0 ^ w — x to obtain

0 5j un+1 — (n + \)unx + nun^x2 5j       — (n + l)w"x.

If P is a p.o.l.a. and 5 is a subalgebra of P, the nonnegative element

m g 5 is said to be an order unit for B provided that for every x e B there

exists a real number y such that — yu 5j x ^ yw. If j eP then the sub-

algebra of P generated by y is denoted by A(y).

Main Theorem. Let P be a p.o.l.a., let xeP, and let x2 = — y 5j 0.

If there is an element w e A(y) such that (i) w is an order unit for A(y) and

(ii) — w 5s x 55 w>, ?Aen x = 0.

Proof. Since w is an order unit for v4(y), there is a real number /? ^ 1

such that j 5J pV. Define h = ßw. Then « = 2Ui akyk f°r some positive

integer / and for some real numbers a,, a2, • • • , at, m is an order unit for

A(y), —u £j x 5j w, and — u ^ y ^ u. By Lemma 2, we conclude that

nun~lx 5j w" and nun~\—x) £j w™ for n ^ 1. Thus, — 5j nun~xx ^ w"

and, multiplying by — w 5j —x 5] «, we obtain nun^y 5j w"+1 for » g 1.

We note, for later reference, that « = 1 yields y ^ m2. From w3 =

(2*=i ^J*)3' we have u3 = yz for some z e ^(j). If we choose <5 so that

z £j <5w, we have u3 5] ömj. Hence, nun+1 5J <5«wM_1j 5] (5w"+1 for n ^ 2.

If TV is chosen so that N > d, we can conclude that wA+1 = 0. From

0 5j 7 5j w and 0 5J j <j w2, we obtain 0 5j _yre 5? for « ^ 1. Therefore

= 0 and, since u 6 ^(y), = 0. Thus, v*"1 = 0, u"'1 = 0, etc.

back to u = 0. Finally, — w 5j x 5j u implies that x = 0.

The algebra Rn of real n x n matrices can be partially ordered in

infinitely many ways so as to produce a p.o.l.a. In this paper, however, we

consider just one such ordering; namely, if x = (oc0) and y = (ß(j) are
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matrices in Rn, we say that x Sj y provided ätj 5j ßtj for 1 5j i, j £j n.

It is immediate that this partial ordering of Rn does indeed yield a p.o.l.a.

Further, we say that the matrix x = (<xw) is positive provided etu > 0 for

1 5j i,j 5j n.

Corollary 1. Let Rn be the p.o.l.a. of real n x n matrices and let

x e Rn. If x2 = —y ^ 0, then there are no positive matrices in A(y).

Proof. Suppose the corollary is false and let v be a positive matrix

in A(y). Then v is clearly an order unit for A(y) and, in addition, we may

choose a real number y such that — yv 5j x 5j yv. The Main Theorem

guarantees that x = 0. Thus, y = 0 and v = 0, a contradiction.

The following examples are of interest.

Example 1.   Let y e Rn where
"0  1  0 •

y =

o 0 1

for i as 1,2,

0 0   0   ••• 1

1 0   0   ••• 0

It is easy to verify that y + y2 + ■ ■ ■ + yn is a positive matrix. Hence

x2 ?= — y for every x 6 Rn.

Example 2. Let P be the algebra of all (row-finite) infinite matrices.

If x = (ocfJ-) and y = (ßif) are in P, we say that x 5J j provided ai; 5j p\,

for all i, j. Under this partial ordering P becomes a p.o.l.a. Let x =

(yu) € P where

yiS = (-l)'i   if  2£jy<ji+ 1,

= 0        if 7 = 1 or / =t i + 2

If y = —x2, it is easily seen that — y 5j x 5j _y. This example shows that in

the Main Theorem (ii) alone is not enough. Clearly, (i) alone is not enough;

simply take x/0 and x2 = 0.

Example 3. Let y e Rn with 0 £j y. It is easy to show that if y has at

most n — 2 zero entries then y2 is a positive matrix. Thus, by Corollary 1,

if x2 = — y 0, then y has at least n — 1 zero entries. There is some

evidence to suggest that, if x e Rn (n ^ 2) and x2 = — y 5j 0, then there

is a permutation matrix p such that

^"LO yj

where jn and j22 are square matrices of order less than n. If this were

true it would follow that y has at least In — 2 zero entries. This latter
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result cannot be improved upon; that is, for every n ^ 2 there is a matrix

x e R„ such that x2 5j 0 and x2 has exactly In — 2 zeros. For example:

Let
-1   2   2   ••• 2"

x =

-2

-2

-2

4

where I22 is the identity matrix of order n — 1. If y =

yu o o • • • o"

y

o
0

0

J22

-x2, then

where yu and j22 are positive matrices of order 1 and n — 1, respectively.

Corollary 2. Le/ A be a finite dimensional real linear algebra with

1 =■= 0. If there is an element i in the center of A such that i2 = —1, then A

cannot be partially ordered so that A becomes a p.od.a.

Proof. Assume A is a p.o.l.a. under some partial ordering and let

{wu w2, • • • , wn} be a basis for A. Choose uk so that — uk 5j wk 5j uk for

1 5j k <j n and put u = 2£=i uk. Now, suppose w — TJL, y^i e ^ and

lety = max {\yx\, \y2\, ■■■ , \y„\). Then -yuk <j ykwk ̂  yuk for 1 ^ k n

and — yu 5j w 5j yw. Thus, w is an order unit for A. Hence, for some real

number ß, —ßu^l^ßu.lfv — ßu, then 1 5j v implies that v 5j v2.

Therefore, v2 is an order unit for A. Now let x = iv. Then x2 = (iv)2 =

—t;2. By the Main Theorem, x = 0. Thus v2 = 0 and 1 = 0, a contra-

diction.
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