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GROUP RINGS SATISFYING A POLYNOMIAL IDENTITY. Ill

d. s. passman

Abstract. Let K[G] denote the group ring of G over the field K

and let A denote the F.C. subgroup of G. In this paper we show that

if K[G] satisfies a polynomial identity of degree n, then [C7:A] g

n/2. Moreover this bound is best possible.

If K[G] satisfies a polynomial identity of degree n, then it is known

that [G:A] < oo. In fact if K[G] is prime or if Kh&s characteristic 0 then

[G:A] <; (n/2)2 by the results of [4]. In general we have [G:A] ^ n! by

the results of [1], Thus the goal of this paper is to sharpen these to obtain

the best possible bound, namely [G:A] ^ n/2. We follow the notation

of [3].

1. The abelian case. Throughout this section we assume that

[G:A] < oo and that A is abelian. Let x, = 1, x2, x3, • ■ ■ , xm be a com-

plete set of m = [G:A] coset representatives for A in G.

Lemma 1.1. There exists a K-monomorphism p:K[G] —> K[A]m,

where the latter is the ring of m x m matrices over K[A], satisfying

(i) for a 6 A, P(a) = diag (ax\ a*\- ■ • , <fm%

(ii) p(Xi)en = en, e^xj1) = eu,

where {e{j} is the set of matrix units in K[A]m.

Proof. Since A is normal in G, {xT"1, xj1, • • ■ , x^1} is also a complete

set of coset representatives for A in G. Set V = K[G]. Then clearly V is a

left ATA]-module with free basis {x^1, %*, • • •, x„1}. Now V is also a

right AT[G]-moduIe and as such it is faithful. Since right and left multi-

plication commute as operators on V, it follows that A^[G] is a set of

^[AJ-linear transformations on an w-dimensional free A'tAJ-module V.

Thus there exists a A'-monomorphism p with P(K[G]) S AT[A]m.

Let a e A. Then xf*a = (x^hax^xT1 = e&XT1; so clearly P(a) =
diag (aXl, a*2, • ■ • , aJ"m).

Now to compute e11p(x71) we need only consider the first row of the

matrix p(x7x). Since x^1 = x^1 we see that this first row is precisely

eu\ so eupixT1) = eueu = eu.

Received by the editors February 18, 1971.

AMS 1970 subject classifications. Primary 16A26; Secondary 16A38.

Key words and phrases. Group ring, polynomial identity, F.C. subgroup.

© American Mathematical Society 1972

87



88 D. S. PASSMAN

Finally to compute p(xt)en we need only look at the first column of the

matrix p(x,). Since x~xxt £ A for j i and since x7xXj = 1 = x, for

j = i we see that this first column is precisely ea. Thus p(x^en = eaeu =

ea and the result follows.

Let K[A] be embedded naturally in -K[A]m as the set of scalar matrices.

Since A is abelian this is a central subring of K[A]m. Let R = K[A]

■ P(K[G]) be the subring of K[A]m generated by K[A] and p(K[G]). We

will show below that R is in some sense a large subring of ÜT[A]m.

Lemma 1.2.   For each i = 2, 3, • ■ • , m, set

Ht = {(a,*,) = f+xfaxt] ä€&}.

TVifcvi Z/4 ij an infinite subgroup of A.

Proof. Since A is a normal abelian subgroup of G, the map ??4: A —>- A

given by a -*■ ar1^ is an endomorphism. Clearly Ht is the image of so

Hi is a subgroup of A and CA(x2) is the kernel of Thus [A:CA(xJ] =

\Hi\. If li/J < co, then [A:CA(Xi)] < co and since [G: A] < oo we would

have [G:CG(Xi)] < co and ^ e A, a contradiction. Thus Ht is infinite.

For each / = 2, 3, • • • , m, let S{ be the augmentation ideal of K[HA.

Thus

s«-{2.*yre4#l|2*.-o}.

Then is a A'-algebra (without 1) which has as a ^T-basis the elements

1        With 5^ 1.

Now Si £ A'tA] and K[A] is commutative. We define S = S2S3 ■ ■ ■ Sm

to be the set of all finite Ä-linear sums of products s2s3 ■ • • sm with 54 e S^

Since A'fA] is commutative, 5 is a AT-subalgebra (without 1) of R~[A].

Lemma 1.3.   S is not a nilpotent ring.

Proof. It clearly suffices to show that for each / = 2, 3, • • • , m and

a e K[A] that = 0 implies a. = 0. Suppose St<x = 0 and let g e Ht.

Then 1 — g 6 S{ so (1 — g)a = 0. Thus a = go. and (Supp a) = g(Supp a).

Therefore //, permutes by left multiplication the finite set Supp a £ A.

If a # 0 then Supp cc^ 0 and this would imply easily that Ht is finite,

a contradiction by Lemma 1.2. Thus a = 0 and the result follows.

Lemma 1.4. With the above notation we have R (S)m, the ring of

m x m matrices over S.

Proof. Recall that A"[A] is contained in A^[A]m as scalar matrices and

that R = A:[A] • P(K[G]). Let i = 2, 3, • • • , or m and let a e A. Then

a-1(p(a) - <?*) e R.
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The above matrix is diagonal and we will consider the 1 st and ith entries.

The ith entry is a~1(aXi — ax<) = 0 by Lemma 1.1 (i) and the 1st entry is

arlfa — aXi) = 1 — a~1aXi = 1 — (a, x().

Thus for any element g e H{, R contains a matrix of the form

diag (1 - g, *, 0, *)

where the 0 is in the ith position. Since R is a A'-algebra and since every

element of St is a AT-linear sum of such terms 1 — g we see that for each

s( e     R contains a matrix of the form oq = diag      *, 0, *).

Now choose s( e St for i = 2, 3, • • • , m and let a,- be as above. Then

a = a2a3 • • • aTO e R and

a = diag (s2s3 ■ ■ • sm, 0, 0, • • • , 0) = s2s3 • • • smeu

where {ejk} is the usual set of matrix units. This clearly implies that

R 2 Sen.

Finally let ejk be any matrix unit. Then, by Lemma l.l(ii), R 2

pfx^SeMxZ1) = Sejk and R 2 (S)m.

Proposition 1.5. Let K[G] satisfy a polynomial identity of degree n and

suppose further that [G: A] < co and A is abelian. Then [G : A] ^ n/2.

Proof.   By Lemma 5.3 of [1], K[G] satisfies an identity of the form

/(£l> ?2> ' ' ' > Cn) = ^1^2 ' ' ' C« 4" 2        ^(t£<t(1)C<2> " ■ ' C(r>)-
ffeSyninifT i= 1

Then of course p(A'[C7]) also satisfies/. Since/ is multilinear and ATA] is

central in K[A]m, it then follows easily that R = K[A] ■ p(K[G]) satisfies f.

By Lemma 1.4, R 2(S)m, so (S)m also satisfies/.

Suppose by way of contradiction that m = [C7: A] > n/2. Since S is not

nilpotent by Lemma 1.3 we can choose sa), si2), • • • , sln) e S with

swsm ■ ■ ■ sM jt 0. Since n < 2m we may set & = sa)elu £2 = sme12,

£3 = s(3>e22, t,t = sU)e23, C5 = ^(5)e33, • • •. Then £x£2 •• •'£» evaluated at

these values is i<1)i(2) • • ■ s(n}eXj ̂  0 where j = [n/2] + 1. On the other

hand for all a e Sym„, a 1, C(i)C(2> ' ' " evaluated at these values

is zero. Thus (S)m does not satisfy/, a contradiction. Therefore m g n/2 and

the result follows.

2. The general case.   Let Ak(G) be denned as in [3].

Lemma 2.1. Suppose there exists an integer k with [G:Ak(G)] < co.

Then [G:A] < co and\A'\ < 00.

Proof. Since A 2 Ak and [C7:Aj.] < 00 we have [C7:A] < co. Now

A is a subgroup of G so every right translate of Ak in G is either entirely

contained in A or is disjoint from it. This implies that [A:AJ < 00 and

say A = Akyx u Aky2 U •'• '• U Akyr.
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Since each jf £ A we can set u = max^ [G:C(yt)] < oo. If x e A then

x £ A^ for some I and this implies easily that [G: C(x)] ^ wfc. Thus

[A:CA(x)] ^ uk and by Theorem 4.4(h) of [3], |A'| < oo.

We now come to the main result of this paper.

Theorem 2.2. Let K[G] satisfy a polynomial identity of degree n. Then

[G: A(G)] ^ n/2 and |A(G)'| < oo.

Proof. Set k = (n!)2. Then by Theorem 3.4 of [3], [G:Ak(G)] < oo.

Thus, by Lemma 2.1, [G:A(G)] < oo and |A(G)'| < oo. Set H = A(G)'

and consider G = G/H. If x £ A(G) then clearly x, its image in G, has

only finitely many conjugates and x e A(G). Conversely suppose x e A(G).

Then conjugates of x are contained in only finitely many cosets of H.

Since H is finite, x has only finitely many conjugates and x e A(G). Thus

A(G) = A(G)/H.
Consider K[G]. Since K[G] is an epimorphic image of A^[G] we see that

K[G] satisfies a polynomial identity of degree n. Since A(G) = A(G)/H

and H = A(G)' we see that A(G) is abelian and [G:A(G)] < oo. By

Proposition 1.5 we have finally [G:A(G)] = [G:A(G)] ^ n/2 and the

result follows.

The following corollary shows that the above bound n/2 is best possible.

The result is an immediate consequence of Theorems 1.1 (i) and 1.3(i) of

[3] and Theorem 2.2.

Corollary 2.3. Let n be a positive integer and suppose that G is a

group with A(G) abelian. Then [G: A(G)] ^ n/2 if and only if K[G] satisfies

a polynomial identity of degree 5s n.

On the other hand, there is no fixed bound for the size of A(G)'. For

example, let A be a finite abelian group of odd order and let G be the

extension of A by an element x of order 2 which acts in a dihedral manner

on A (that is, ax = arx for all a £ A). Then G is finite so G = A(G) and

A = G' can be made arbitrarily large. Since G has an abelian subgroup

of index 2, K[G] satisfies a polynomial identity of degree 4 and this is

independent of the size of A = G'.

Finally we remark that Theorem 2.2 answers in the affirmative Problem

4(9 of [2].
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