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GROUP RINGS SATISFYING A POLYNOMIAL IDENTITY. II

D. S. PASSMAN

ABSTRACT. Let K[G] denote the group ring of G over the field K
and let A denote the F.C. subgroup of G. In this paper we show that
if K[G] satisfies a polynomial identity of degree n, then [G:A] =
n[2. Moreover this bound is best possible.

If K[G] satisfies a polynomial identity of degree n, then it is known
that [G:A] < co. In fact if K[G] is prime or if K has characteristic O then
[G:A] = (n/2) by the results of [4]. In general we have [G:A] < n! by
the results of [1]. Thus the goal of this paper is to sharpen these to obtain
the best possible bound, namely [G:A] = n/2. We follow the notation
of [3].

1. The abelian case. Throughout this section we assume that
[G:A] < oo and that A is abelian. Let x; = 1, x5, x5, - * *, X,, be a com-
plete set of m = [G:A] coset representatives for A in G.

LemMA 1.1. There exists a K-monomorphism p:K[G]— K[A],,
where the latter is the ring of m X m matrices over K[A), satisfying

(i) for ae A, p(a) = diag (a™, a™, - - -, a°),

(i) p(x)en = ey, enp(xi™) = ey,
where {e,;} is the set of matrix units in K[A],,.

PROOF. Since A is normal in G, {x7*, x3, -+ -, x,'} is also a complete
set of coset representatives for A in G. Set ¥ = K[G]. Then clearly Vis a
left K[A}-module with free basis {x7*, x3%, -+, x,}. Now V is also a
right K[G]-module and as such it is faithful. Since right and left multi-
plication commute as operators on V, it follows that K[G] is a set of
K[A}-linear transformations on an m-dimensional free K[A]-module V.
Thus there exists a K-monomorphism p with p(K[G]) = K[A],.

Let aeA. Then xj'a= (x;'ax)x;* = a®x;'; so clearly p(a) =
diag (@™, a®, - - - , a®m).

Now to compute e;;p(x;") we need only consider the first row of the
matrix p(x;"). Since x,x;* = x;' we see that this first row is precisely
ey;; 50 enp(x;’) = eney; = ey,
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Finally to compute p(x,)e;; we need only look at the first column of the
matrix p(x;). Since x7'x;¢ A for j## i and since x;'x; = 1= x, for
Jj = i we see that this first column is precisely e,;. Thus p(x,)e;; = e, =
e;; and the result follows.

Let K[A] be embedded naturally in K[A}],, as the set of scalar matrices.
Since A is abelian this is a central subring of K[A],,. Let R = K[A]
- p(K[G]) be the subring of K[A],, generated by K[A] and p(K[G]). We
will show below that R is in some sense a large subring of K[A],,.

LemmA 1.2. For eachi=2,3,---,m, set
H; = {(a,x;) = a'x7'ax;| a € A}.
Then H; is an infinite subgroup of A.

Proor. Since A is a normal abelian subgroup of G, the map 7,:A — A
given by a — a~1a™ is an endomorphism. Clearly H; is the image of 7, so
H; is a subgroup of A and C,(x;) is the kernel of ;. Thus [A:C,(x,)] =
|Hj). If |[H;] < oo, then [A:Ca(x;)] < oo and since [G:A] < oo we would
have [G:Cgy(x;)] < oo and x; € A, a contradiction. Thus H; is infinite.

For each i = 2,3, -+, m, let S; be the augmentation ideal of K[H;].
Thus

S; ={2k,g EK[Hi” 2k, =0}

Then S; is a K-algebra (without 1) which has as a K-basis the elements
1 —gwithgeH;,, g# 1.

Now S; © K[A] and K[A] is commutative. We define S = S,S;° -+ S,,
to be the set of all finite K-linear sums of products s,s3 * * - 5, With s5; € S;.
Since K[A] is commutative, S is a K-subalgebra (without 1) of K[A].

LemMMA 1.3. S is not a nilpotent ring.

Proor. It clearly suffices to show that for each i =2,3,---, m and
o € K[A] that S;a = 0 implies « = 0. Suppose S;« = 0 and let g € H,.
Thenl — g€ S;s0 (1 — g)a = 0. Thus « = g and (Supp «) = g(Supp ).
Therefore H,; permutes by left multiplication the finite set Supp « = A.
If o % 0 then Supp « # @ and this would imply easily that H, is finite,
a contradiction by Lemma 1.2. Thus « = 0 and the result follows.

LemMMA 1.4.  With the above notation we have R 2 (S),,, the ring of
m X m matrices over S.

ProOF. Recall that K[A] is contained in K[A},, as scalar matrices and
that R = K[A] - p(K[G]). Leti =2,3,---, or m and let a € A. Then

a(p(@) — a) € R.
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The above matrix is diagonal and we will consider the 1st and ith entries.
The ith entry is a1(a® — a*) = 0 by Lemma 1.1(i) and the Ist entry is
alla—a¥)=1—ala%=1-— (a,x)
Thus for any element g € H;, R contains a matrix of the form
dlag (1 - g, *9 0’ *)

where the 0 is in the ith position. Since R is a K-algebra and since every
element of S; is a K-linear sum of such terms 1 — g we see that for each
s; € S;, R contains a matrix of the form «; = diag (s;; *, 0, *).

Now choose s, € S, for i =2,3,---,m and let «; be as above. Then
o= ooty * ** o, € R and

o = diag (5383 * * 5, 0,0, ,0) = 8555 * S

where {e;} is the usual set of matrix units. This clearly implies that
R 2 Sey;.

Finally let e; be any matrix unit. Then, by Lemma 1.1(ii), R 2
p(x;)(Ser)p(xi’) = Sey; and R 2 (S)y-

ProposSITION 1.5.  Let K[G] satisfy a polynomial identity of degree n and
suppose further that [G:A] < oo and A is abelian. Then [G:A] < n/2.

Proor. By Lemma 5.3 of [1], K[G] satisfies an identity of the form
f(Cl, Cg, ttty, (n) = £1€2 ttt Cn + 2 $1ka€a(1)€a(2) T Co‘(‘n)'

ceSymgiao
Then of course p(K[G]) also satisfies f. Since f is multilinear and K[A] is
central in K[A],,, it then follows easily that R = K[A] - p(K[G]) satisfies f.
By Lemma 1.4, R 2(S),,, so (S5),, also satisfies f.

Suppose by way of contradiction that m = [G:A] > n/2. Since S is not
nilpotent by Lemma 1.3 we can choose 5,5, ... s™e§ with
sWs@ ... 5™ o£ 0. Since n < 2m we may set {, = sVey,, {, = sPey,,
Ly = 5®ep, {4 = 5Weyy, {5 = 5%eqy, . Then (L, -+ {, evaluated at
these values is s's'® - - - 5™e ; 5 0 where j = [n/2] + 1. On the other
hand for all 0 € Sym,,, 0 # 1, {,(1,{s(2) * * * Lo(m) €valuated at these values
is zero. Thus (S),, does notsatisfy f, a contradiction. Thereforem < n/2and
the result follows.

2. The general case. Let A (G) be defined as in [3].

LemMMA 2.1.  Suppose there exists an integer k with [G:A(G)] < .
Then [G:A] < o0 and |A'] < 0.

Proor. Since A 2 A, and [G:A,] < oo we have [G:A] < oo. Now
A is a subgroup of G so every right translate of A, in G is either entirely
contained in A or is disjoint from it. This implies that [A:A;] < oo and
say A = Ay, VA, U- - U ALY,
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Since each y; € A we can set ¥ = max, [G:C(y,)] < co. If x € A then
x €A,y; for some i and this implies easily that [G:C(x)] < uk. Thus
[A:Ca(x)] = uk and by Theorem 4.4(ii) of [3], |A'] < co.

We now come to the main result of this paper.

THEOREM 2.2. Let K[G] satisfy a polynomial identity of degree n. Then
[G:A(G)] = n/2 and |A(G)'] < .

PrOOF. Set k = (n!)2. Then by Theorem 3.4 of [3], [G:A,(G)] < co.
Thus, by Lemma 2.1, [G:A(G)] < «© and |A(G)'| < . Set H = A(G)’
and consider G = G/H. If x € A(G) then clearly x, its image in G, has
only finitely many conjugates and x € A(G). Conversely suppose x € A(G).
Then conjugates of x are contained in only finitely many cosets of H.
Since H is finite, x has only finitely many conjugates and x € A(G). Thus
A(G) = A(G)/H.

Consider K[G]. Since K[G] is an epimorphic image of K[G] we see that
K[G] satisfies a polynomial identity of degree n. Since A(G) = A(G)/H
and H = A(G)' we see that A(G) is abelian and [G:A(G)] < . By
Proposition 1.5 we have finally [G:A(G)] = [G:A(G)] = n/2 and the
result follows.

The following corollary shows that the above bound n/2 is best possible.
The result is an immediate consequence of Theorems 1.1(i) and 1.3(i) of
[3] and Theorem 2.2.

COROLLARY 2.3. Let n be a positive integer and suppose that G is a
group with A(G) abelian. Then [G:A(G)] = n/2 if and only if K[G] satisfies
a polynomial identity of degree =< n.

On the other hand, there is no fixed bound for the size of A(G)'. For
example, let 4 be a finite abelian group of odd order and let G be the
extension of 4 by an element x of order 2 which acts in a dihedral manner
on A (that is, a® = a~! for all a € 4). Then G is finite so G = A(G) and
A = G’ can be made arbitrarily large. Since G has an abelian subgroup
of index 2, K[G] satisfies a polynomial identity of degree 4 and this is
independent of the size of 4 = G'.

Finally we remark that Theorem 2.2 answers in the affirmative Problem
4(i) of [2].
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