MINIMAL IDEALS IN GROUP RINGS

D. S. PASSMAN

ABSTRACT. Let K[G] denote the group ring of G over an algebraically closed field K. In this paper we show that K[G] has a minimal left ideal which affords a finite dimensional representation of the ring if and only if G is finite.

1. Annihilator ideals. Let R be a ring with one and let T be a subset of R. Then the left annihilator of T, $l_R(T)$, is defined by $l_R(T) = \{\alpha \in R \mid \alpha T = 0\}$. Clearly $l_R(T)$ is a left ideal of R. If in addition T is a left ideal of R, then $l_R(T)$ becomes an ideal (two-sided).

Let A be an ideal of R. We say that A is an annihilator ideal if $A \neq R$ and if $A = l_R(T)$ for some subset T of R. Observe that the condition $A \neq R$ is equivalent to $T \notin \{0\}$.

Let K[G] denote the group ring of the group G over the field K. We do not assume unless otherwise stated that K is algebraically closed. If A is an annihilator ideal in K[G], then we let φ_A denote the algebra homomorphism $\varphi_A: K[G] \to K[G]/A$. In this paper we study the K-algebra K[G]/A.

If $\alpha = \sum a_x x \in K[G]$, then we let Supp α be the finite subset of G given by Supp $\alpha = \{x \in G \mid a_x \neq 0\}$.

LEMMA 1.1. Let A be an annihilator ideal in K[G] and set $G_A = \{x \in G \mid \varphi_A(x) \in K\}$. Then G_A is a finite normal subgroup of G.

PROOF. Since K is central in K[G]/A it is clear that G_A is a normal subgroup of G. Let $A = l_{K[G]}(T)$ and let $\alpha \in T$, $\alpha \neq 0$. If $x \in G_A$ then there exists $k \in K$, $k \neq 0$, with $\varphi_A(x) = k = \varphi_A(k)$. Thus $x - k \in A$ so $(x - k)\alpha = 0$. This yields $x\alpha = k\alpha$ so $x(\text{Supp } \alpha) = \text{Supp } \alpha$. We have therefore shown that G_A permutes the finite nonempty set Supp $\alpha \subseteq G$ by left multiplication and hence G_A is finite.

The F.C. subgroup of G is defined by

$$\Delta = \Delta(G) = \{x \in G \mid [G: \mathbf{C}_G(x)] < \infty\}.$$

© American Mathematical Society 1972

Received by the editors January 29, 1971.

AMS 1970 subject classifications. Primary 16A26.

Key words and phrases. Group ring, minimal ideal, finite dimensional representation.

We let $\theta: K[G] \to K[\Delta]$ denote the natural projection. The following is a simpler version of some work of M. Smith in [2].

THEOREM 1.2. Let A be an annihilator ideal in K[G]. Let $\alpha \in K[G]$ and suppose that $\varphi_A(\alpha)$ is central in K[G]/A. Then $\alpha - \theta(\alpha) \in A$.

PROOF. Say $A = l_{K[G]}(T)$ and let $\tau \in T$. Let $x \in G$. Then $\varphi_A(\alpha)$ commutes with $\varphi_A(x)$ so $\varphi_A(x\alpha - \alpha x) = 0$ and $x\alpha - \alpha x \in A$. Thus

$$1x(\alpha\tau) - \alpha x\tau = (x\alpha - \alpha x)\tau = 0.$$

Since this is true for all $x \in G$, Lemma 1.3 of [1] yields

$$(\alpha - \theta(\alpha))\tau = \theta(1)\alpha\tau - \theta(\alpha)\tau = 0.$$

Since this is true for all $\tau \in T$ we have $\alpha - \theta(\alpha) \in l_{K[G]}(T) = A$ and the result follows.

Let R be a ring with center Z. Then elements $\alpha_1, \alpha_2, \dots, \alpha_n \in R$ are said to be linearly independent over Z if $\eta_1 \alpha_1 + \eta_2 \alpha_2 + \dots + \eta_n \alpha_n = 0$ with $\eta_i \in Z$ implies that $\eta_1 = \eta_2 = \dots = \eta_n = 0$.

COROLLARY 1.3. Let A be an annihilator ideal in K[G]. Then

(i) $\varphi_A(K[\Delta(G)])$ contains the center of K[G]/A.

(ii) $\varphi_A(x_1), \varphi_A(x_2), \dots, \varphi_A(x_n)$ are linearly independent over the center of K[G]/A if $x_1, x_2, \dots, x_n \in G$ are in distinct cosets of $\Delta(G)$.

PROOF. (i) Suppose $\varphi_A(\alpha)$ is central in K[G]/A. Then by Theorem 1.2, $\alpha - \theta(\alpha) \in A$. Thus $\varphi_A(\alpha) = \varphi_A(\theta(\alpha))$.

(ii) Suppose $\bar{\eta}_1 \varphi_A(x_1) + \bar{\eta}_2 \varphi_A(x_2) + \cdots + \bar{\eta}_n \varphi_A(x_n) = 0$ with $\bar{\eta}_i$ in the center of K[G]/A. By part (i) there exists $\eta_i \in K[\Delta(G)]$ with $\bar{\eta}_i = \varphi_A(\eta_i)$. Thus the above becomes

$$\varphi_A(\eta_1 x_1 + \eta_2 x_2 + \cdots + \eta_n x_n) = 0.$$

Fix a subscript *j* and set

$$\begin{aligned} \alpha &= (\eta_1 x_1 + \eta_2 x_2 + \dots + \eta_n x_n) x_j^{-1} \\ &= \eta_1 x_1 x_j^{-1} + \eta_2 x_2 x_j^{-1} + \dots + \eta_n x_n x_j^{-1}. \end{aligned}$$

Then $\varphi_A(\alpha) = 0$ so $\varphi_A(\alpha)$ is central. Thus by Theorem 1.2 and the fact that the x_i 's are in distinct cosets of $\Delta(G)$ we have $\alpha - \eta_j = \alpha - \theta(\alpha) \in A$. This yields $\bar{\eta}_j = \varphi_A(\eta_j) = \varphi_A(\alpha) = 0$ and the result follows.

LEMMA 1.4. Let A be an annihilator ideal in K[G] and let H be a subgroup of G. Then $B = A \cap K[H]$ is an annihilator ideal of K[H] and therefore $\varphi_A(K[H]) = \varphi_B(K[H])$.

PROOF. Clearly $B = A \cap K[H]$ is an ideal in K[H]. Let $\{x_v\}$ be a set of right coset representatives for H in G. Then every element $\alpha \in K[G]$

82

can be written uniquely as a finite sum $\alpha = \sum_{\nu} \alpha_{\nu} x_{\nu}$ with $\alpha_{\nu} \in K[H]$. If $\beta \in K[H]$ then clearly $\beta \alpha = 0$ if and only if $\beta \alpha_{\nu} = 0$ for all ν . Thus if $A = l_{K[G]}(T)$ then it follows easily that $B = l_{K[H]}(S)$ where $S = \{\tau_{\nu} \mid \tau \in T\} \subseteq K[H]$. This completes the proof.

2. Finite dimensional algebras. In this section we consider the possibility that K[G]/A is a finite dimensional algebra over a field $F \supseteq K$.

LEMMA 2.1. Let $G = \Delta(G)$ and let A be an annihilator ideal in K[G]. Suppose that K[G]/A is a finite dimensional algebra over a field $F \supseteq K$. Then there exists a subgroup H of G with $[G:H] < \infty$ and $\varphi_A(K[H])$ central in K[G]/A.

PROOF. Set E = K[G]/A and for each $x \in G$ let $V_x = C_E(\varphi_A(x))$. Then V_x is certainly an *F*-subspace of *E*. Since *E* is finite dimensional, it follows easily that there exists $x_1, x_2, \dots, x_n \in G$ with

$$\bigcap_{x\in G} V_x = V_{x_1} \cap V_{x_2} \cap \cdots \cap V_{x_n}.$$

Set $H = C_G(x_1) \cap C_G(x_2) \cap \cdots \cap C_G(x_n)$. Since $G = \Delta(G)$ we have $[G:H] < \infty$.

Let $y \in H$. Then y centralizes x_1, x_2, \dots, x_n so $\varphi_A(y)$ centralizes $\varphi_A(x_1), \varphi_A(x_2), \dots, \varphi_A(x_n)$ and hence

$$\varphi_A(y) \in V_{x_1} \cap V_{x_2} \cap \cdots \cap V_{x_n} = \bigcap_{x \in G} V_x.$$

Thus for all $x \in G$, $\varphi_A(y)$ centralizes $\varphi_A(x)$ and the result follows.

LEMMA 2.2. Let A be annihilator ideal in K[G] and suppose that K[G]/A is a finite dimensional algebra over a field $F \supseteq K$. Then there exists an annihilator ideal $B \supseteq A$ in K[G] such that K[G]/B is a finite dimensional simple algebra over F.

PROOF. By induction on $\dim_F K[G]/A$. Certainly if this dimension is 1 then the result follows with B = A. Suppose first that K[G]/A is prime. Then since it is a finite dimensional algebra, it follows from the Wedderburn theorems that K[G]/A is simple and we need only take B = A.

Suppose now that E = K[G]/A is not prime. Then there exists $\bar{\alpha}$, $\bar{\beta} \in E - \{0\}$ with $\bar{\alpha}E\bar{\beta} = 0$. Let $\bar{\alpha} = \varphi_A(\alpha)$, $\bar{\beta} = \varphi_A(\beta)$ and say $A = l_{K[G]}(T)$. Since $\bar{\beta} \neq 0$ we have $\beta T \neq 0$ and thus $S = K[G]\beta T \neq 0$. Then S is a left ideal in K[G] so $C = l_{K[G]}(S)$ is an annihilator ideal in K[G]. Now A is an ideal so

 $AS = (AK[G]\beta)T \subseteq AT = 0$

and hence $C \supseteq A$. Moreover, $\varphi_A(\alpha K[G]\beta) = 0$ so

$$\alpha S = (\alpha K[G]\beta)T \subseteq AT = 0$$

and $\alpha \in C$. Thus C > A and K[G]/C is a proper homomorphic image of *E*. This implies that K[G]/C is an *F*-algebra and $\dim_F K[G]/C < \dim_F K[G]/A$. By induction there exists an annihilator ideal $B \supseteq C$ with K[G]/B simple. Since $B \supseteq C \supseteq A$, the result follows.

LEMMA 2.3. Let $x \in G$ have infinite order. Then $\bigcap_{n=1}^{\infty} (x^n - 1)K[G] = 0$.

PROOF. Let $\{y_{\nu}\}$ be a set of right coset representatives for $\langle x \rangle$ in G. Then every element of K[G] can be written uniquely as a finite sum $\alpha = \sum_{\nu} \alpha_{\nu} y_{\nu}$ with $\alpha_{\nu} \in K[\langle x \rangle]$. Thus $\alpha \in \bigcap_{n=1}^{\infty} (x^n - 1)K[G]$ if and only if $\alpha_{\nu} \in \bigcap_{n=1}^{\infty} (x^n - 1)K[\langle x \rangle]$ for all ν . Therefore it suffices to show that the latter intersection is zero or in other words we can assume that $G = \langle x \rangle$.

Let $\alpha \in K[G]$, $\alpha \neq 0$. Then Supp α is a finite subset of $\langle x \rangle$ and we let

 $\max (\alpha) = \max \{a \mid x^a \in \text{Supp } \alpha\}, \qquad \min (\alpha) = \min \{a \mid x^a \in \text{Supp } \alpha\}.$

Now clearly if $\alpha \in (x^n - 1)K[G]$, $\alpha \neq 0$ then max $(\alpha) - \min(\alpha) \ge n$ and this therefore yields $\bigcap_{n=1}^{\infty} (x^n - 1)K[G] = 0$.

LEMMA 2.4. Let A be an annihilator ideal in K[G] and suppose that K[G]/A is a field. Then G is a periodic group.

PROOF. Suppose by way of contradiction that G has an element x of infinite order and let $A = l_{K(G)}(T)$. Then for each integer $n \ge 1$, $x^n - 1$ is not a zero divisor in K[G] by Lemma 2.4 of [1] so $x^n - 1 \notin A$ and $\varphi_A(x^n - 1) \neq 0$. Since K[G]/A is a field there exists $\beta_n \in K[G]$ with $\varphi_A(x^n - 1)\varphi_A(\beta_n) = 1$. Thus $\varphi_A((x^n - 1)\beta_n - 1) = 0$. If $\tau \in T$ then this yields

$$(x^n - 1)\beta_n \tau - \tau = [(x^n - 1)\beta_n - 1]\tau = 0$$

so $\tau \in (x^n - 1)K[G]$. Since this is true for all $n \ge 1$ and all $\tau \in T$ we have $T \subseteq \bigcap_{n=1}^{\infty} (x^n - 1)K[G] = 0$, by Lemma 2.3, a contradiction.

3. Finite dimensional representations. We now come to the main result of this paper.

THEOREM 3.1. Let K[G] denote the group ring of G over an algebraically closed field K and let A be an annihilator ideal in K[G]. If K[G]/A is a finite dimensional algebra over a field $F \supseteq K$, then G is finite.

PROOF. We first reduce the problem to $\Delta(G)$. By Corollary 1.3 (ii) we have $[G:\Delta] < \infty$. Also by Corollary 1.3 (i), $\varphi_A(K[\Delta])$ is a subring of $\varphi_A(K[G])$ containing the center. Thus $\varphi_A(K[\Delta]) \supseteq F$ so $\varphi_A(K[\Delta])$ is also a finite dimensional *F*-algebra. Finally by Lemma 1.4 there exists an annihilator ideal *B* in $K[\Delta]$ with $\varphi_A(K[\Delta]) = \varphi_B(K[\Delta])$. Therefore $K[\Delta]$ satisfies all the hypotheses of this theorem and since $[G:\Delta(G)] < \infty$ it suffices to consider the case $G = \Delta(G)$.

We now assume that $G = \Delta(G)$ and by Lemma 2.2 we can assume that A is so chosen that K[G]/A is simple. Then K[G]/A is a finite dimensional simple algebra so its center Z is a field. Now by Lemma 2.1, G has a subgroup H with $[G:H] = n < \infty$ and with $\varphi_A(K[H])$ central in K[G]/A. Thus $\varphi_A(K[H])$ is an integral domain but it is in fact a field. Let x_1, x_2, \dots, x_n be a set of right coset representatives for H in G. Then $K[G] = \sum_{i=1}^{n} K[H]x_i$ so K[G]/A is a finitely generated module over $\varphi_A(K[H])$. Therefore every element of K[G]/A is integral over $\varphi_A(K[H])$. In particular Z is a field which is integral over $\varphi_A(K[H]) \subseteq Z$ and this implies (by looking at the integral equation satisfied by the reciprocals of the elements of $\varphi_A(K[H]) - \{0\}$) that $\varphi_A(K[H])$ is also a field. By Lemma 1.4 there exists an annihilator ideal B in K[H] with $\varphi_A(K[H]) = \varphi_B(K[H])$. Since $[G:H] < \infty$ it suffices to show that H is finite.

Thus we have reduced the problem to the case in which K[G]/A is in fact a field. By Lemma 2.4, G is periodic. Now let $x \in G$. Then $x^n = 1$ for some n > 1 so $\varphi_A(x)$ is algebraic over K. Since K is algebraically closed this implies that $\varphi_A(x) \in K$. Thus in the notation of Lemma 1.1, $G = G_A$ and by that lemma G is finite. This completes the proof of the theorem.

Let E be an algebra over a field K. An irreducible representation ρ of E is said to be finite dimensional if $\rho(E)$ satisfies a polynomial identity over K.

COROLLARY 3.2. Let K[G] be the group ring of G over an algebraically closed field K. Then K[G] has a minimal left ideal which affords a finite dimensional representation of the ring if and only if G is finite.

PROOF. Suppose first that G is finite. Then K[G] is a finite dimensional algebra so it has minimal left ideals. Let I be such an ideal. Then I affords a finite dimensional representation of K[G] since K[G] satisfies a polynomial identity.

Conversely suppose that K[G] has a minimal left ideal I which affords a finite dimensional representation. Let A denote the kernel of the homomorphism $\rho: K[G] \to \text{End}(I)$. Then A is clearly the set of left annihilators of I so A is an annihilator ideal and $\rho = \varphi_A$. Now $\varphi_A(K[G])$ is a primitive ring satisfying a polynomial identity and hence by a theorem of Kaplansky (Theorem 6.4 of [1]) $\varphi_A(K[G])$ is a finite dimensional algebra over some field $F \supseteq K$. By Theorem 3.1, G is finite.

Finally we show by example that the above is false if K is not algebraically closed. Let K = Q be the field of rationals and let G be the P_{∞} group for some prime p. Thus

$$G = \langle x_1, x_2, x_3, \cdots, x_n, \cdots \mid x_1^p = 1, x_{n+1}^p = x_n \text{ for all } n \ge 1 \rangle.$$

Define p^n th roots of unity in the complex numbers C inductively by δ_1 is a primitive pth root of 1 and $\delta_{n+1}^p = \delta_n$. Then the map $\varphi: Q[G] \to C$

given by $x_i \rightarrow \delta_i$ is clearly a homomorphism of Q[G] onto a subfield F of C. We compute the kernel of this map.

Set

$$e = (1/p)(1 + x_1 + x_1^2 + \cdots + x_1^{p-1}).$$

Then e is an idempotent in Q[G] and $\varphi(e) = 0$ since $1 + \delta_1 + \delta_1^2 + \cdots + \delta_1^{p-1} = 0$. Thus the kernel of φ contains eQ[G]. Now let $\varphi(\alpha) = 0$. Then there exists an integer $n \ge 1$ with $\alpha \in Q[\langle x_n \rangle]$ and we can write $\alpha = \sum_{i \ge 0} a_i x_n^i$. Thus $0 = \varphi(\alpha) = \sum_{i \ge 0} a_i \delta_n^i$ and it follows that $\sum a_i x_n^i$, viewed as a polynomial in x_n , is divisible by the cyclotomic polynomial

$$1 + x_n^{p^{n-1}} + x_n^{2p^{n-1}} + \dots + x_n^{(p-1)p^{n-1}} = pe.$$

Hence $\alpha \in eQ[G]$ and eQ[G] is the kernel of φ .

Since Q[G] = (1 - e)Q[G] + eQ[G] we see that $(1 - e)Q[G] \simeq F$. Thus I = (1 - e)Q[G] is a minimal ideal in Q[G] which affords a finite dimensional (in fact, commutative) representation of Q[G]. Since G is not finite, this yields the required counterexample.

References

1. D. S. Passman, Infinite group rings, Marcel Dekker, New York, 1971.

2. M. Smith, On group algebras, Bull. Amer. Math. Soc. 76 (1970), 780-782.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN, MADISON, WISCONSIN 53706