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MINIMAL IDEALS IN GROUP RINGS

d. s. passman

Abstract. Let K[G] denote the group ring of G over an alge-

braically closed field K. In this paper we show that K[G] has a min-

imal left ideal which affords a finite dimensional representation of

the ring if and only if G is finite.

1. Annihilator ideals. Let R be a ring with one and let T be a subset

of R. Then the left annihilator of T, lE(T), is defined by lR(T) =

{a e R I <xT = 0}. Clearly lR{T) is a left ideal of R. If in addition Tis a left

ideal of R, then lR(T) becomes an ideal (two-sided).

Let A be an ideal of R. We say that A is an annihilator ideal if A ^ R

and if A = 1R(T) for some subset T of R. Observe that the condition

A # R is equivalent to T ^ {0}.

Let A^[G] denote the group ring of the group G over the field K. We do

not assume unless otherwise stated that K is algebraically closed. If A is

an annihilator ideal in K[G], then we let <pA denote the algebra homo-

morphism q>1:K[G] —>- K~[G]/A. In this paper we study the A"-algebra

K[G]/A.
If a = 2 ctxx e R~[G], then we let Supp a be the finite subset of G given

by Supp a = {x e G | ax # 0}.

Lemma 1.1. Let A be an annihilator ideal in K[G] and set GA =

{x £ G I <pA(x) e K}. Then GA is a finite normal subgroup of G.

Proof. Since K is central in K[G]jA it is clear that GA is a normal

subgroup of G. Let A = 1K[0]{T) and let a e T, a 5^ 0. If x e GA then there

exists k g K, k ^ 0, with <pA(x) = k = <fA(k). Thus x — k e A so

(x — k)oc = 0. This yields .va = /ca so x(Supp a) = Supp a. We have

therefore shown that GA permutes the finite nonempty set Supp a £ G

by left multiplication and hence GA is finite.

The F.C. subgroup of G is defined by

A = A(t7) = {xeG\ [G:CG(x)] < 00}.
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We let 0: K[G] -* K[A] denote the natural projection. The following is a

simpler version of some work of M. Smith in [2].

Theorem 1.2. Let A be an annihilator ideal in K[G]. Let a e K[G] and

suppose that cpA{a) is central in K[G]/A. Then a — 0(a) e A.

Proof. Say A = lKlG](T) and let t e T. Let x e G. Then <^(a)

commutes with <pA{x) so <pA(xa — ax) = 0 and xa — ax 6 A. Thus

lx(ar) — axr — (xa — ax)r = 0.

Since this is true for all x e G, Lemma 1.3 of [1] yields

(a - 0(a))r = 0(l)ar - 0(a)r = 0.

Since this is true for all t e T we have a — 0(a) e lKlQ]{T) = A and the

result follows.

Let R be a ring with center Z. Then elements a,, a2, •••,«„ e i? are

said to be linearly independent over Z if + r\2<x2 +.■•/" + = 0

with rjtGZ implies that n1 = r\2 = • • ■ = r\n = 0.

Corollary 1.3.   Let A be an annihilator ideal in K[G]. Then

(i) cpA(K[A(G)D contains the center of K[G]/A.

(ii) <pA{x-^), cpA(x2), • • • , (pA(xn) are linearly independent over the center

of R~[G]/A if xx, x2, ■ ■ ■ , xn e G are in distinct cosets of A(G).

Proof, (i) Suppose q>A(ot) is central in K[G]/A. Then by Theorem 1.2,

a — 0(a) e A. Thus <pA(ot.) = <pA(6(&)).

(ii) Suppose fj^Ax^ + r)2<pA(x2) -\-1- fjn<pA(xn) = 0 with ^ in

the center of K[G]jA. By part (i) there exists ^ 6 K~[/x(G)] with j^- = (pA(rit).

Thus the above becomes

0U(»7i*i + »?2^2 + ■ ■ • + rjnxn) = 0.

Fix a subscript / and set

a = (*7i*i + »72*2 + " • • + VnXjxJ1

= ViXiXj1 + rj^xj1 H-+ f]nxnxj\

Then <pA(a) = 0 so yA(a) is central. Thus by Theorem 1.2 and the fact

that the xt's are in distinct cosets of A(G) we have a — ^ = a — 0(a) e A.

This yields rjj = fA(%) — ̂ (a) = 0 and the result follows.

Lemma 1.4. Let A be an annihilator ideal in K[G] and let H be a sub-

group of G. Then B — A n K[H] is an annihilator ideal of K[H] and

therefore <pA(K[H]) = yB(K[H]).

Proof. Clearly B = A n K[H] is an ideal in K[H]. Let {xv} be a set

of right coset representatives for H in G. Then every element a e A^[C7]
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can be written uniquely as a finite sum a = 2v av^v with av e K[H]. If

ß 6 AT/f] then clearly ßa. = 0 if and only if /Sav = 0 for all v. Thus if

^ = Ikioi(T) then it follows easily that B = lKiHj(S) where 5" =

{tv I t e T} £ K[H]. This completes the proof.

2. Finite dimensional algebras. In this section we consider the

possibility that K[G]/A is a finite dimensional algebra over a field F 2 K.

Lemma 2.1. Let G = A(G) and let A be an annihilator ideal in K[G].

Suppose that K[G]/A is a finite dimensional algebra over a field F 2 K.

Then there exists a subgroup H of G with [G:H] < co and <pA(K[H])

central in K[G]/A.

Proof. Set E = K[G]/A and for each x e G let Vx = CE(<pA(x)). Then

Vx is certainly an F-subspace of E. Since E is finite dimensional, it follows

easily that there exists xu x2, • • • , xn e G with

C\V* = vXi nvX2 n--- n vXn.
xeG

Set H = Cefe) n CG(x2) n • • • n Ca(xn). Since G = A(G) we have
[G:H] < co.

Let y e H. Then y centralizes xx, x2, • • ■ , xn so <pA(y) centralizes

<Pa(xi)> <Pa(x2), - • • > <Pa(xJ and hence

Thus for all x e G, ^(j) centralizes ^(x) and the result follows.

Lemma 2.2. Let A be annihilator ideal in K[G] and suppose that K[G]/A

is a finite dimensional algebra over a field F =? K. Then there exists an

annihilator ideal B 2 A in K[G] such that K[G]/B is a finite dimensional

simple algebra over F.

Proof. By induction on dim^ K[G]/A. Certainly if this dimension is 1

then the result follows with B = A. Suppose first that K[G]jA is prime.

Then since it is a finite dimensional algebra, it follows from the Wedder-

burn theorems that K[G]/A is simple and we need only take B = A.

Suppose now that E = K[G]/A is not prime. Then there exists ä,

ß e E - {0} with äEß = 0. Let ä = <^(a), ß = <pA(ß) and say A =

Ikiqi(T). Since ß # 0 we have ßT ^ 0 and thus S = K[G]ßT ?= 0. Then

51 is a left ideal in K[G] so C = lKioi(S) is an annihilator ideal in K[G].

Now A is an ideal so

AS = (AK[G]ß)T <= AT = 0

and hence C 2 A. Moreover, <pA(ccK[G]ß) = 0 so

aS = (v.K[G]ß)T c AT = 0
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and oieC. Thus C > A and K[G]/C is a proper homomorphic image of

E. This implies that K[G]/C is an P-algebra and dim^ K[G]jC <

dimF K[G]/A. By induction there exists an annihilator ideal B 2 C with

K[G]jB simple. Since B 2 C 2 A, the result follows.

Lemma 2.3.   LetxeG have infinite order. Then f| ™=1 (*" - l)/s:[G] = 0.

Proof. Let {yv} be a set of right coset representatives for (x) in G.

Then every element of K[G] can be written uniquely as a finite sum

« = 2v «vjv with av 6 K[(x)]. Thus a e f| «=i (*" - 1)K[G] if and only if

av 6 f] „=1 (xn — l)K[(x)] for all v. Therefore it suffices to show that the

latter intersection is zero or in other words we can assume that G = (x).

Let a e K[G], a^O. Then Supp a is a finite subset of (x) and we let

max (a) = max {a | xa e Supp a},      min (a) = min {a | xa e Supp a}.

Now clearly if a e (xn — 1)K[G], a # 0 then max (a) — min (a) ^ n and

this therefore yields f) »=i (*" - 1)K[G] = 0.

Lemma 2.4. Let A be an annihilator ideal in K[G] and suppose that

K[G]/A is a field. Then G is a periodic group.

Proof. Suppose by way of contradiction that G has an element x of

infinite order and let A = Ik(G)(T). Then for each integer n g£ 1, x* — 1

is not a zero divisor in K[G] by Lemma 2.4 of [1] so x* - 1 ^ A and

(pA(xn - 1) 5* 0. Since K[G]/A is a field there exists ßn e K[G] with

<pA(xn - \)<pA(ßn) = 1. Thus (pj(x» - \)ßn - 1) = 0. If rer then

this yields

(x" - l)p> - t = [(x" - \)ßn - 1]t = 0

so t e (x" — OA'tG]. Since this is true for all n ^ 1 and all t e Twe have

Ts p| »=1 (x" — 1)ä:[G] = 0, by Lemma 2.3, a contradiction.

3. Finite dimensional representations. We now come to the main

result of this paper.

Theorem 3.1. Let K[G] denote the group ring of G over an algebraically

closedfield K and let A be an annihilator ideal in K[G]. If K[G]/A is a finite

dimensional algebra over a field F 2 K, then G is finite.

Proof. We first reduce the problem to A(G). By Corollary 1.3 (ii) we

have [C A] < oo. Also by Corollary 1.3 (i), ^(ATA]) is a subring of

q)A(K[G]) containing the center. Thus (^(ATA]) 2 F so cpA{K[A]) is also

a finite dimensional f-algebra. Finally by Lemma 1.4 there exists an

annihilator ideal B in K[A] with <pA{K[A\) = <ps(K{A]). Therefore K[A]

satisfies all the hypotheses of this theorem and since [G:A(G)] < oo it

suffices to consider the case G = A(G).
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We now assume that G = A(G) and by Lemma 2.2 we can assume that

A is so chosen that K[G]/A is simple. Then K[G]/A is a finite dimensional

simple algebra so its center Z is a field. Now by Lemma 2.1, G has a sub-

group H with [G:H] = n < oo and with <pA(K[Hj) central in K[G]/A.

Thus <pA(K[H]) is an integral domain but it is in fact a field. Let xu x2, ■ ■ • ,

xn be a set of right coset representatives for H in G. Then K[G] =

2? AT//]*; so A'tG]//! is a finitely generated module over cpA(K[H]).

Therefore every element of K[G]/A is integral over <pA(K[H\). In particular

Z is a field which is integral over cpA (K[H~\) £ Zand this implies (by looking

at the integral equation satisfied by the reciprocals of the elements of

cpA{K[H]) — {0}) that <pA(K[H]) is also a field. By Lemma 1.4 there exists

an annihilator ideal B in K[H] with <pA{K[H\) = yB(K[H]). Since

[G:H] < oo it suffices to show that H is finite.

Thus we have reduced the problem to the case in which K[G]/A is in

fact a field. By Lemma 2.4, G is periodic. Now let x eG. Then xn = 1 for

some n > 1 so <pA(x) is algebraic over K. Since K is algebraically closed

this implies that (pA(x) e K. Thus in the notation of Lemma 1.1, G = GA

and by that lemma G is finite. This completes the proof of the theorem.

Let E be an algebra over a field K. An irreducible representation p of E

is said to be finite dimensional if p{E) satisfies a polynomial identity over K.

Corollary 3.2. Let K[G] be the group ring of G over an algebraically

closed field K. Then K[G] has a minimal left ideal which affords a finite

dimensional representation of the ring if and only if G is finite.

Proof. Suppose first that G is finite. Then K[G] is a finite dimensional

algebra so it has minimal left ideals. Let / be such an ideal. Then / affords

a finite dimensional representation of K[G] since K[G] satisfies a poly-

nomial identity.

Conversely suppose that K[G] has a minimal left ideal / which affords

a finite dimensional representation. Let A denote the kernel of the homo-

morphism p:K[G] -> End (/). Then A is clearly the set of left annihilators

of /so A is an annihilator ideal and p = <pA. Now cpA(K[G]) is a primitive

ring satisfying a polynomial identity and hence by a theorem of Kaplansky

(Theorem 6.4 of [1]) <pA(K[G]) is a finite dimensional algebra over some

field F 2 K. By Theorem 3.1, G is finite.

Finally we show by example that the above is false if K is not algebrai-

cally closed. Let K = Q be the field of rationals and let G be the P„ group

for some prime p. Thus

G = (xu x2, xa, • • •, x„, - • •I x\ — 1, xvn+l = xn   for all n ^ 1).

Define /?"th roots of unity in the complex numbers C inductively by

£, is a primitivepth. root of 1 and 8£+1 = £„. Then the map <p: Q[G] -> C
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given by x, —> £4 is clearly a homomorphism of Q{G] onto a subfield F

of C. We compute the kernel of this map.

Set

e = (l/p)(l + x\ + xl + • • • + xr1)-

Then e is an idempotent in Q[G] and 99(e) = 0 since 1 + £x + £j + • • • +

£f_1 = 0. Thus the kernel of <p contains eQ[G]. Now let 95(a) = 0. Then

there exists an integer n ^ 1 with a e ß[(x„)] and we can write

a = 2tgo ö<**' Thus 0 = 95(a) = 2*ao       and it follows that 2

viewed as a polynomial in x„, is divisible by the cyclotomic polynomial

1 + Xl'' + xf'1 + ■■■+ x'r1^"'1 = pe.

Hence a G eQ[G] and eQ[G] is the kernel of 99.

Since Q[G] = (1 - e)Q[G] + eQ[G] we see that (1 - e)Q[G] ~ F.
Thus /= (1 — e)Q[G] is a minimal ideal in Q[G] which affords a finite

dimensional (in fact, commutative) representation of Q[G]. Since G is

not finite, this yields the required counterexample.
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