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OF HYPONORMAL SINGULAR INTEGRAL

OPERATORS
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Abstract. Fix q>eLa}(E)ax\A let E^R be bounded and measur-

able; for \<p<ao consider the bounded linear operator

where feJLv(E). If i>=A + (>eC then there are no nonzero LV(E)

solutions of Tf=vf for p>2 in case A is a point of positive Lebesgue

density in the complement of E.

I. Introduction. For cp fixed in LX(E) where F<=/f is bounded and

measurable, the operator

is a bounded operator on L"(E) for l</?<co. The singular integral is to

be considered as a Cauchy principal value, that is, f* = limEi0 f \s—f|=e.

In the case p = 2 the operator F* (the adjoint of F) belongs to the class of

hyponormal operators. An operator A on a Hilbert space is called hypo-

normal in case its selfadjoint self-commutator A*A — AA* = D is positive

semidefinite (Z)^0). These hyponormal singular integral operators were

studied by Putnam [1] and Clancey [2]. When <p is Riemann integrable the

spectrum of Tv was computed by Putnam in [1], In the case where cp is

only assumed to be Lx the spectrum was described in [2]. The knowledge

of the fine structure of the spectrum is limited. In case cp is smooth (say

continuous) and p=2 it is possible to describe which parts of the spectrum

correspond to point spectrum of the operator Tv (see Putnam [1] and also

Tricomi [3, p. 190]). In Tricomi, one gets an idea of how smooth the

eigenfunctions are. Putnam [1] also proves in the case p=2 that if

l9>(*)l=y>0 ae- on an interval [a, ß]cE, then fe(a, ß) belongs to the
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(1)   Tf(s) = TJ(s) = sf(s) + i a.e. seE,feLv(E),
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point spectrum of 7^. One reason for interest in the fine structure of the

spectrum of F is the fact that existence of point spectrum of an operator or

its adjoint automatically gives an invariant subspace theorem for the

operator. In spite of the fact that the self-commutator of an operator T of

the form (1) is one dimensional there is no theorem stating that these

operators have an invariant subspace.

Some positive results can be stated. For example, if \<p{x)\~^.y>0 a.e.

on [a, ß]czE then by Putnam's result F has an invariant subspace. Our

results will show that eigenfunctions of the equation Tf—vfi (if they exist)

will be nonsmooth. The proof of our result will indicate an unpleasant

(perhaps unnecessary) association of the problem of the fine structure of

the spectrum of the operators in (1) with harmonic conjugate function

theory for L1 functions.

2. The operator F acting on L2(E) can be written in the cartesian form

T=H—iJ where H and J are the selfadjoint operators defined for feL2(E)

by Hf(s)=sf(s) and Jf(s) = (cp(s)lni) J| cp't)f{t){s-t)~l dt a.e. seE. For
an operator A acting on some complex linear space X we will write Av =

A — vi where / is the identity on X and veC. The spectrum of an operator

Fon a Hilbert space will be denoted by a(T). For E^R measurable define

the essential closure of Fas the set Eeas={xeR\mcas1((x—d, x+<5)n£)>

0 for all <5>0}, where measx denotes Lebesgue measure on R. A set F<=/c

will be called perfect in measure in case £eS9=F. The spectrum of the

operators Fof the form (1) on L2(E) was described in [2] in

Theorem 1. If T is the operator defined by (1) on L2(E), then o(T) =

{x + iy:xeEess, — Mx^y^Mx} where Mx=ess\imsupt=x[\cp(t)\2].

A hyponormal operator A on a Hilbert space § is called completely

hyponormal in case there are no subspaces reducing A (that is invariant

under A and A*) on which A is a normal operator. In case cp(t)y60 a.e.

teE, then the adjoint of F defined by (1) is completely hyponormal on

L2(F). (See, e.g. Putnam [1].) We will assume cp has this property. Since

A hyponormal on §> is equivalent to \\AV f\\2^\\(Av)*f\\2 for all/g§ and

veC it follows that eigensubspaces of a hyponormal operator reduce the

operator; moreover, the restrictions of the operator to these subspaces are

normal operators. Then there are no nonzero L2(E) solutions of (Fv)*/=0

where Fis given by (1) and veC; hence there are no L2+S(E) solutions of

(rv)*/=0, for any r5>0.

The following lemma is a simple corollary of M. Riesz's theorem which

states that the Hilbert transform Qf(s) = (llTTi)(%f(t)(t—s)-1dt is a

bounded linear operator on LP(R) for 1 <p< °o.
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Lemma 1.   Iff<=Lv{R) where \<p<co then

measj^ e R:\Qf (s)\ ^ a > 0}] < A,

where Av depends only on p.

Proof.   See for example Katznelson [4, Chapter 3].

We present the main result.

Theorem 2. Let E be bounded and measurable. Then for (5>0 there are

no nonzero Li+S(E) solutions of Tvf= 0 where T is the operator defined by (I)

in case a = Re v is a point of positive Lebesgue density in the complement of

E.

Proof. We will give a proof first for the case where E is perfect in

measure. If x$E=Eess=o(H), then since 0^(C/, f) = {i[HJy-JyHx]f,f)

for feL\E) and x,yeR it follows that

(2) 0 ^ (Cf/;1/, H-1/) = {i[JyH~x - HZxJv]fi f),     f e L\E).

Now when Hxf=iJllf for /V0 in L2(E), one obtains, from (2),

I'H.H^fif)^ or 2 )B (t-X){t-x)-l\f{t)\2dt^Q, x$a{H). This implies

(3) \\f&n\t-X\<\q(XJftx% x$E.

Now by Lemma 1 if the nonzero solution of Hlf=iJllf \s in L2+S<>(E) for

<5„>0, then

II I f\2\\p°
meas1LCR\£) n [X - e, X + e]] ^ A^nW" i^jö ,

lly m

where P0 = 1 + <50/2

One concludes that

,.   meases — E) n [X — s, X + el]
hm-= 0.
elo 2f

A trivial modification of the preceding argument can be made to con-

clude

lim meaStK* - E) n [X - h, X + £]] -
ä|o.*io h + k

This completes the proof in the case where E is perfect in measure.

We now derive an analogue of equation (2) when x is in the spectrum of

H. However, the integral in (2) must be replaced by a Cauchy principal
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value. Assume now Hxf=iJhlf for f^O in L?+S(E) where <5>0. Then

tt Je t — x tt Je t — x        tt Je t — x

r mdtrm ds +a rm. dt r m Äi
J     t — X      J     S — t tt2 J    t — X     J     S — t J

(4) 2

1 r* <pf

tt J  t — : dt + \<pf(x)\2 a.e

The last equality follows since <pf is in L2+Ö(E) by Theorem IV of

Tricomi [3, p. 169]. From (4) one obtains

* I f\2
12 ̂  \X - x\ I I -^-dt a.e. x£E

and the proof of Theorem 2 when E is not perfect in measure follows as

above.

3. The following result due to Putnam [5] (see also Stampfli [6] and

Sz.-Nagy and Foias [7, p. 93]) can be used to rule out nonzero L2(E)

(hence F2+a(F)) solutions of Fv/=0. For K compact in C (respectively R)

define

.  , d(x, K)
yK(xo) = sup-, X0€K,

xiK d(x, x0)

= 1, x0<£ K,

where d denotes distance in C (respectively R).

Theorem 3. Let A be completely hyponormal on $r>, o=o(T) then if

ya(v)=l there is no nonzero solution of (Av)*f=0.

Consequently, if E is perfect in measure there are no nonzero L2(E)

solutions of Fv/=0 when yE(Rev)=l. It should be remarked that

yE(Re v)=l implies the Lebesgue density of Re v in R\E is positive.

The author would like to thank Alexander Davie for a conversation

concerning the following lemma.

Lemma 2.   Let E^R be compact, then meas1[{x\yE(x)=l}CiE]=0.

Proof. One can write R\E=\J™=1 (an, bn) where (an, bn) are pairwise

disjoint. Set cn=(an+bJ2), rn={bn-an)ß; for ij>1, let E =

Ä\Un=i (.cn—vrn, cn + nrn). Then lim tl meas, F, = meas! Fand x0eF, im-

plies, for xe(an, bn),

d(x, E)/(x, x0) <; d(cn, E)/d(cn, x0) < d(cn, E)/d(cn, £„) = l/n.

Consequently yE(xo)=llv f°r x0eE^ and the lemma follows.
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Since the spectrum of Tv has positive measure, it follows from Lemma

2 that Theorem 3 does not preclude the possibility of point spectrum of

the operators Tb. The possibility of nonzero L2(E) solutions of Tvf=0 for

T defined by equation (1) and v in the boundary of a{T) remains un-

answered.

One interesting example is the case where £ is a Cantor set K of positive

measure and <p= lK. Theorem 2 shows that as an operator on L2+S(K) for

<5>0, Tv has no eigenvalues. A similar result is true if E=G and <p=\0

where G is a union of perfect nowhere dense sets in [— 1,1 ] with meas, G = 1

and the Lebesgue density of every point in [—1, 1] in the complement of

G is positive.

In the case where E= [a, b] and <p is smooth, Tricomi [3, p. 185] obtains

nonzero L1 solutions of Taf=0.

Added in proof. The author has recently obtained examples of

operators of the form (1) having L2(E) eigenvalues in the boundary of the

spectrum.
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