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SETS ACCESSIBLE AT EACH POINT
ONLY BY WILD ARCS

GARY GLENN MILLER1

Abstract. A positional pathology as described in the title is

shown to occur in three-space. We construct an arcwise accessible

point set M such that each arc to M is locally knotted at uncountably

many points. In addition we give examples of connected, locally con-

nected point sets S and T which are accessible at each point only by

wild arcs and tame arcs respectively. The point set M has countably

many components, and each of these is a tame finite 2-complex.

Moreover E3 — M is locally connected and arcwise connected.

1. Introduction. An important segment of the work dealing with the

position of a subset in a space is concerned with accessibility. Early

references and historical comments, beginning with Schoenfiies' 1908

paper, may be found in [11]. A point x of a space A"is said to be accessible

from a subset Y of X if for each y in Y there is an arc A from x to y such

that A—x<^ Y. We say y is an accessible point of a subset Y of X if y is

accessible from X— Y. In more recent work, stronger accessibility prop-

erties such as accessibility by tame arcs and piercing by tame arcs character-

ize tame embeddings of certain sets in E3 ([3], [9]).

We say a closed set X in £3 is tame if there is a homeomorphism of E3

onto itself which carries X onto a polyhedron (the union of a locally finite

collection of tetrahedra, triangles, segments and points). X is wild if it is

not tame. The simplest set which can be tame or wild is an arc. An arc A is

locally unknotted at a provided some neighborhood of a in A lies in a

topological disk. A is locally unknotted if it is locally unknotted at each

point. Recently Keldys has shown that an arc is locally unknotted iff

it lies in a topological disk [8]. Local unknottedness is one of two

independent properties which characterize tame arcs [2], [7].

Here we investigate the positional property of a subset being accessible

only by a restricted class of arcs. The existence of a set accessible only by

wild arcs follows from Bing's example of a simple closed curve which

pierces no disk [1].
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Example 1. A connected locally connected accessible subset S of E3

each of whose points is accessible only by wild arcs. Let rx, r2, " • • be the

rational points in E3. Let Au be an arc from rt to rs such that Ai} pierces no

disk and diameter Aa is the distance from r2 to rs. Then S=E3—UAij is

the desired set.

In §2, we construct an accessible point set M as described in the abstract.

The construction involves inductively positioning disjoint 2-complexes

around auxiliary knotted arcs to form a labyrinth. Each arc to a point of

the set must traverse its knotted passages in such a manner that the arc

contains sequences of knotted subarcs converging to uncountably many

points of the arc. In §3, we show M has the desired properties. Finally in

§4 we discuss related positional questions and give an example of a set

accessible only by tame arcs.

Point sets which have the positional properties discussed here cannot be

locally compact at any point. If X is a locally compact subset of E3 with

empty interior, then X contains a dense set of points accessible by tame arcs

and a dense set of points accessible by wild arcs. The proof of this is

immediate.

2. A labyrinth. The desired set M=\J™=xMn where the sets Mn are

defined inductively as follows.

Let C be the cylinder Dxl where D is the interior of the unit circle in

the plane and / is the closed unit interval. Let B be a triangle together with

its interior. A prismatic cell is a homeomorphic image of P0 = BxI. For

each prismatic cell P, choose a homeomorphism FP from P0 onto P. The

triangular and rectangular faces of P are then the images of the respective

faces of P0 under FP.

Figure 1
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Let A0 be the knotted arc depicted in Figure I. A0 passes through the

interior of P0 and has end points which are interior points of the triangular

faces.

Let E be the 2-complex depicted in Figure L E consists of the three

rectangular faces of P0 together with the obstructions depicted in the

interior of P0. The interiors of the two triangular faces of P0 are not in E.

There is then a homeomorphism G from C onto P0-E with the following

properties. G carries the axis of C onto A0. Each arc which lies wholly in

C except for an end point which is in the cylinder bounding C is carried by

G onto an arc lying wholly in P0-E except for an end point in E. Finally

each point of E is the end point of such an arc. If P is any prismatic cell,

let Fp denote the homeomorphism FF G from C into P.

In the following, no special properties of the knotted arc A0 are used.

Instead any knotted arc can be used as long as E and G can be chosen as

above.

Let Q denote the set of all points of the Cantor ternary set which are not

end points of removed middle third intervals. Let 6? denote the collection

of all components of the open unit ball minus all points x such that the

distance from x to the origin is a number in Q. Then is a countable

collection of closed concentric spherical shells. Let 3T denote the collection

of all components of the cylinder C minus all points x such that the distance

from x to the axis of C is a number in Q. Then $~ is a countable collection

of closed tubular shells.

Figure 2
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Figure 3

Initial stage. Form a finite 3-complex in each spherical shell in S° as

follows. Let S be a member of £f. Triangulate the outer surface of S

with triangles having diameter less than the thickness of S and such that

the edge of each triangle lies in a plane through the origin. Form prismatic

cells in S using these planes.

Let &x denote the collection of all prismatic cells formed in this way in

each shell in £f. Let My = \\ {FP(E):Pe32ll}. Each component of Af, is

then a finite 2-complex in a shell S in £f as depicted in Figure 2.

Transition. Assume the construction through the «th stage has been

performed.

Figure 4



1972] SETS ACCESSIBLE AT EACH POINT ONLY BY WILD ARCS 587

Form a finite 3»complex on each tubular shell T in as follows.

Triangulate the outer surface of T with triangles having diameter less than

the thickness of T. Then form prismatic cells using lines perpendicular to

the axis of C. This is depicted in Figure 3.

For each prismatic cell P in let 0" n+x(P) be the collection of all

prismatic cells F*(X) where X is a prismatic cell as above in some tubular

shell in f. Then (J 0n+x{P) is a point set in P whose components are

finite 3-complexes. Finally let ^„+1 be the collection of all members of

0>n+x(P) for P in 0>n, and let Mn+x = \J {FP(E):Pe0*n+x}.

Mn+X is then a countable union of homeomorphic copies of E such that

if two intersect, their intersection is a rectangular face of each. Mn+X

does not intersect M{ for /<«, and M„+1 does not intersect the auxiliary

knotted arcs FP(A0) for Pin 07>i where i<fe+l. Moreover each component

of Mn+X is a finite 2-complex in some P in Such a component lies in a

knotted tubular shell FP{T), as depicted in Figure 4, where Pis in 3T.

This completes the inductive construction of M.

Select the triangulations and maps in the previous construction so that

the copies of P0 and E are tame. The components of M are then tame

finite 2-complexes.

3. Properties of the labyrinth.

Proposition 3.1. Each point of M is accessible and E3-M is arcwise

connected.

Proof. Let Jf\ be the collection of all knotted arcs FP(A0) for P in

0*x, and let Hx=\} X~XV(E3—\J SP). Clearly each member of Jfx is a

subarc of an arc A as depicted in Figure 2 which lies in Hx and joins the

origin to a point of the unit sphere. A intersects each component of

E3— (J SP, and each of these is a sphere with radius in Q. Hx is then arcwise

connected.

Let n be a positive integer, and let P be a member of 0°n. Let Jf(P) be

the collection of all knotted arcs FX(A0) for X<=0»n+x(P). Let H(P)=

Pp(C-\JJ'). H(P) then consists of the knotted arc FP(A0) together with

concentric tubular surfaces each the image of a cylinder in C which has

radius a nonend point of the Cantor set.

Clearly each member of Jf(P) is a subarc of an arc A as depicted in

Figure 4. A lies in W(P)=H(P)KJ\J Jf(P) except for one end point a

and joins a point of the central knotted arc FP(A0) to a point a of the 2-

complex FP{E). A then intersects each of the components of H(P). Since

each of these components is arcwise connected and each member of Jf (P)

lies in an arc like A, W(P) is arcwise connected. Moreover each point of
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FP(E) is the end point of an arc like A. Thus each point of FP(E) is

accessible from W(P).

Let/7„+1 = U {W(P):P£0*m and m^n} for n a positive integer. Since/Y,

is arcwise connected and W(P) intersects /Y, for each P in S?x, H2 is arc-

wise connected and each point of Mx is accessible from H2. Assume Hn is

arcwise connected. For each P in 0*n, W(P) contains FP(A0) which is also

in Hn. Therefore Hn+1 is arcwise connected, and each point of Mn is

accessible from Hn+1.

Let /Y= (Jn=i Hn. Then H is arcwise connected, and each point of M is

accessible from H.

Suppose there is an x in the complement of M which is not in H. Then

there is a monotone collection {Pn} of prismatic cells such that PneB2>n

and x= f") {Pn}. Let xn be a point of FP (A0) for each n. For each « there

exists an arc An from xn to xn+1 in Hn+1r\Pn and which intersects Fp (/40)

in x„+1, e.g., a subarc of the central arc FP (A0) in Pn together with a sub-

arc of an arc A as depicted in Figure 4. Then^*=x-r-|Jn=i^nisanarc,and

A* lies in H except for x. Thus E3-M is arcwise connected. Since H lies in

E3-M and A/ is accessible from H, M is accessible from E3-M. This

completes the proof.

Let A be an arc and P be a prismatic cell. Let « be the number of com-

ponents K of A C\P such that A" is a subarc of A and the end points of AT

are on opposite triangular faces of P. We say A spans the knotted passage of

P if n is odd and A nF„(£) = 0.

Proposition 3.2. £ac/r arc to M is locally knotted at uncountably many

points.

Proof. Let xeM and let A be an arc lying wholly in E3-M except for

its end point x. There is an n and an X in 0>n such that xeFx(E). Suppose

x is not a point of one of the two triangular faces of X. Then there is a

nonend point zeA such that zx lies wholly in P where P is X or a member of

0>n contiguous to X. There is an r„< 1 such that the distance from FP~1(z)

to the j-axis is less than r0. Let öo=ßn(''o> I)- For each reQ0, zx intersects

T(r), the image of the cylindrical surface about the y-axis with radius r

under FP. Let reQ0 and let rx>r2> ■ ■ ■ be a sequence of members of g„

converging to r. Let A^ be a component of U 3°n+1{P) between T(rt) and

F(ri+1). Each Kt separates x and z in P. Therefore there is a P-gSP^aP)

such that A4 and z.v spans the knotted passage of Pt for each r. There

is a subsequence P*, P*, ■ ■ ■ of Pu P2, • ■ • which converges to a point

y(r)ezxC\T(r). Let Y={y(r):reQ0}. Then Y is uncountable. If x is a

point of a triangular face of P, then, by a similar argument, there is a point

zeA and an uncountable subset Y of interior points of zx such that for
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each ye Y there is some sequence Pf, P*, • ■ ■ of prismatic cells converging

to y such that zx spans the knotted passage of each P*.

Now suppose A is locally unknotted at ye Y. Then there is a topological

disk Dy and a subarc Ax of A such that D, andyelnt^. There is an n

and a subarc ^42 of zxC\Ax such that _y£lnt42 and A2 spans the knotted

passage of Pf for all />«. A2 lies in the boundary of a subdisk Z>2 of Dv

There is an wj such that dD2r\P^=A2r\P„\. Let H/=P*. There is a poly-

hedral disk D and a subarc A* oidD such that 9Z)nH/=/l*nByand /I*

spans the knotted passage of W.

Let r0<l be such that the solid cylinder C0={ueC: distance u to y-

axis^r0} contains F^(dDC\ W) in its interior relative to C. Let Ux and

U2 denote the interiors of the two end disks of C0. Let T be the torus

Fw(dC0-Ul^JU2)'udW-F%r(U1UU2). Then T bounds a solid torus

Vx in S3, the one point compactification of E3, such that BD^lntVj^ and

the core of Fx contains F^(/40). Since A* spans the knotted passage of W,

the winding number of dD in is not zero. There is then a polyhedral

solid torus V2 in S3 such that dZ><= IntK2, the winding number of 3D in V2

is not zero, and the core K of V2 is an overhand knot. Therefore K is a

companion knot of dD and genus d£>^genus /v [4], [10]. This involves a

contradiction since genus dD=0 and genus A">0.

Proposition 3.3. There is a dense subset of E3 accessible at each point

only by locally knotted arcs.

Proof. M is a dense subset of the open unit ball U.f(M) is the desired

set where f(v)=(l — |i>|)-1,i> for veil.

4. Related positional questions.

(1) Is there a set in E3 accessible at each point by tame arcs which can be

embedded as a set accessible at each point only by wild arcs ?

(2) Is there such a set which can also be embedded as a set accessible

at each point only by tame arcs ?

The following may be of interest in connection with question 2.

Example 2. A connected locally connected subset T in the interior of a

3-cell I3 such that each point of T is accessible only by tame arcs. Let C{ be a

subdivision of I3 into 23< small cubes. Then T=int/3— U Xt where the X/s

are defined as follows. Xt is the center of P. X2 is the sum of 23 straight

line segments from Xx to the center of the 23 cubes in CY To define Xi+1,

we consider a cube C of Ct. Then Xt nC is either a vertex of C or a diagonal

of C. If it is a diagonal, Xi+1dC is this diagonal and Xi+1=Xi+1C\C=

XiCtC. If it is a vertex, then Xi+xr\C is the closed segment from this vertex

to the center of C.



590 g. g. miller

The author wishes to thank J. Vrabec, R. H. Bing and B. J. Pearson for

their comments and the reviewer for the examples.

References

1. R. H. Bing, A simple closed curve that pierces no disk, J. Math. Pures Appl. (9)

35 (1956), 337-343. MR 18, 407.
2. -, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1-15.

MR 23 #A630.
3. P. H. Doyle, Tame, wild and planar sets in E3, Topology of 3-Manifolds and Related

Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962,

pp. 34-36. MR 25 #4505.
4. R. H. Fox, A quick trip through knot theory, Topology of 3-Manifolds and Related

Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N.J., 1962,

pp. 120-167. MR 25 #3522.
5. R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space,

Ann. of Math. (2) 49 (1948), 979-990. MR 10, 317.
6. R. H. Fox and O. G. Harrold, The Wilder arcs, Topology of 3-Manifolds and

Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs,

N.J., 1962, pp. 184-187. MR 25 #3519.
7. O. G. Harrold, Jr., H. C. Griffith and E. E. Posey, A characterization of tame curves

in three-space, Trans. Amer. Math. Soc. 79 (1955), 12-34. MR 19, 972.

8. L. V. Keldys, Imbedding of locally unknotted one-dimensional manifolds in E3, Mat.

Sb. 81 (113) (1970), 279-302 = Math. USSR Sb. 10 (1970), 267-287.
9. L. D. Loveland, Piercing points of crumpled cubes, Trans. Amer. Math. Soc. 143

(1969), 145-152. MR 40 #883.
10. H. Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131-286. MR 17, 291.
11. R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ., vol. 32,

Amer. Math. Soc, Providence, R. I., 1949. MR 10, 614.

Department of Mathematics, University of Victoria, Victoria, British Colum-

bia, Canada


