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//-SPACES WHICH ARE CO-//-SPACES

robert w. west

Abstract. It is shown that a space, having the homotopy type

of a CW complex of finite type, admitting both //-space and co-H-

space structures must have the homotopy type of a point or an

n-sphere for n = \, 3 or 7.

Various people have considered spaces which admit both //-space and

co-/7-space structures. For example C. S. Hoo [5] showed that the set of

homotopy classes of maps from a polyhedron to such a space forms a

Moufang loop thereby extending results of C. W. Norman and R. O'Neill.

On the other hand Curtis and Dugundji [2] showed that if a compact Lie

group admits a JY-cogroup structure then it has rank 1. Here we offer the

following result.

Theorem. Let X have the homotopy type of a connected CW complex

of finite type {of possibly infinite dimension). If X admits both an H-space

and co-H-space structure then X has the homotopy type of S1, S3, S7 or a

point.

Remark. Adams and Walker [1] have exhibited a four-dimensional

countably infinite CW complex T which is surprisingly both an Eilenberg-

Mac Lane space of type (Q, 3) and a Moore space of the same type.

Since T is a suspension by its construction, we see that the hypothesis

about finite type is essential to the theorem.

To prove the theorem let us suppose that X is not contractible. This

implies that H*(X)^0 (or else H*(X)=0 and the Whitehead Theorem

would imply contractibility, since tt1(X)^H1(X) for //-spaces). Our first

step is

Claim 1. IfR is the field Qor Zp,p a prime, the Hopf algebra H*(X; R)

is the exterior algebra on a single {necessarily primitive) generator of odd

degree n.

Proof. We first observe that all cup-products of elements of positive

degree in H*(X; R) vanish. To verify this folklore result note that by
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hypothesis the diagonal map k:X^-XxX factors up to homotopy

through XvX; since A* gives cup-product it therefore suffices to prove

that i*:H*(XxX)-*fi*(XvX), for any coefficient group, is zero. Identi-

fying H*(XvX) with fi*(X)®H*{X), naturality implies that

i*(a X ß) = i*(a x 1) U /*(1 x ß) = (a + 0) U (0 + ß) = 0 + 0.

Now suppose that R = Q. Because of our assumptions on X we can

apply the Leray Structure Theorem, [8, p. 268] or [6], to find that the

algebra H*(X; Q) is the tensor product of a polynomial algebra and an

exterior algebra on generators of odd degree. Claim 1 then follows from

the above observation. A similar argument based on the Borel Structure

Theorem takes care of the R = ZP case.

Comment. The Hopf algebra H*(T)®Q shows that the Leray Struc-

ture Theorem is false without the finite type assumption; here, T is the

space mentioned in the Remark.

Claim 2.   For any coefficient group G, H*{X; G)^H*(Sn; G).

Proof. By Claim 1 this is true for G=Q or Zv, p prime. Now the

homology of X is of finite type so we have an exact sequence, [8, p. 246],

0    H"(X) ®G^ H"(X; G) -* Tor(Hq+1(X), G) -* 0.

As a consequence, we see that Claim 2 will follow if we show that the

G=Z case is true since all Tor terms will be zero.

First, if o^O, n then HV(X)®Q^HI1(X; Q)=0 implies that H"(X) is a

finite group. If Zpa is a direct summand we then have

Zp s ZP« ®Zpcz H"(X) ®ZP^ H"(X; Zp) = 0;

consequently, H"(X)=0. The same method also shows that Hn(X)^Z

so the proof of Claim 2 is complete.

Claim 3. X~S".

Proof. Sn is o-simple for all q (as S1 is an rY-space) and Claim 2

implies that H°{X, *;rrQSn)=0=HQ+1(X, *;rrQSn) for all q^n + l. From

obstruction theory [9, pp. 73, 78] we obtain a bijective correspondence

between [X, Sn] and Hn(X; TrnSn)^Z associating [g] with g*/u where

lieHn(Sn\TTnSn)^Z is the fundamental class. Letting f:X->Sn be

associated with a generator, we conclude from Claim 2 that /* is an

isomorphism of integral cohomology since f*p generates in degree n. By

naturality of the Ext-Hom sequence it follows that f*:Hjf(X)^Hjf(Sn).

Just as in our initial remark concerning contractibility, we observe that

X is simply connected iff «>1. In this case the Whitehead Theorems

imply that/is a homotopy equivalence. The case n= 1 requires more work.
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First, by naturality of the Hurewicz homomorphism, /,. :7r1(A0^7r1(S'1).

Next, let X be the universal covering space of X. Then tt^X) operates

trivially on H*(X) by [7, p. 479] so there exists a exact sequence

0 - Hg_x(X) -+ HQ{X) -+ Hg(X) - 0

for each o by [4, p. 467]. Hence, H+(X)=0. Letting/: A'—»-Ä be the induced

universal covering morphism it follows that/*:H*(X)^.H*(R). It follows

from a form of Whitehead's Theorem [3, p. 113] that / is a homotopy

equivalence. Hence, Claim 3 is established.

The proof of our theorem is completed by observing that since X is an

//-space so must Sn and therefore n=\, 3 or 7.
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