DIRICHLET L-FUNCTIONS AND PRIMITIVE CHARACTERS

TOM M. APOSTOL

ABSTRACT. It is well known that a Dirichlet L-function $L(s,\chi)$ has a functional equation if the character χ is primitive. This note proves the converse result. That is, if $L(s,\chi)$ satisfies the usual functional equation then χ is primitive.

1. Introduction. For a positive integer k, let χ be any character modulo k, let $L(s, \chi)$ denote the L-function defined for R(s) > 1 by the Dirichlet series

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s},$$

let G(n, k) denote the Gauss sum

$$G(n, k) = \sum_{h=1}^{k-1} \chi(h)e^{2\pi i nh/k},$$

and let $G(\chi) = G(1, \chi)$. It is well known that if χ is *primitive* then $L(s, \chi)$ satisfies the functional equation

(1)
$$L(1-s,\chi) = (2\pi)^{-s}\Gamma(s)k^{s-1}\left\{e^{-is\pi/2} + \chi(-1)e^{is\pi/2}\right\}G(\chi)L(s,\bar{\chi}).$$

A recent proof is given in [1]. This paper proves the converse result.

THEOREM 1. If χ is a character modulo k and if $L(s, \chi)$ satisfies the unctional equation (1), then χ is a primitive character modulo k.

The proof is based on two lemmas, each of which gives a necessary and sufficient condition for a character modulo k to be primitive.

2. Lemmas. The first lemma is a restatement of Theorem 1 in [2].

LEMMA 1. A character χ modulo k is primitive if, and only if,

$$G(n, \chi) = \bar{\chi}(n)G(\chi)$$

for every integer n.

Received by the editors April 22, 1971.

AMS 1970 subject classifications. Primary 10H10; Secondary 30A20.

Key words and phrases. Dirichlet L-functions, primitive characters, functional equations.

The next lemma involves the function F(x, s) defined for each real x as the analytic continuation of the Dirichlet series

$$F(x, s) = \sum_{n=1}^{\infty} \frac{e^{2\pi i n x}}{n^s}, \qquad R(s) > 1.$$

This function was used recently in [1] to give a new representation of $L(s, \chi)$ for primitive characters.

Lemma 2. For any character χ modulo k and any complex s, let

$$L^*(s,\chi) = \sum_{h=1}^{k-1} \chi(h) F\left(\frac{h}{k}, s\right).$$

Then we have

(2)
$$L^*(s,\chi) = G(\chi)L(s,\bar{\chi})$$

for all s if and only if χ is primitive.

PROOF. If R(s) > 1 we have

(3)
$$L^*(s,\chi) = \sum_{h=1}^{k-1} \chi(h) \sum_{n=1}^{\infty} n^{-s} e^{2\pi i n h/k} = \sum_{n=1}^{\infty} G(n,\chi) n^{-s}$$

and

(4)
$$G(\chi)L(s,\bar{\chi}) = \sum_{n=1}^{\infty} G(\chi)\bar{\chi}(n)n^{-s}.$$

If (2) holds for all s then it also holds for R(s)>1 and the two Dirichlet series in (3) and (4) have the same coefficients. By Lemma 1 it follows that γ is primitive.

Conversely, if χ is primitive, Lemma 1 shows that the two functions in (3) and (4) are equal for R(s) > 1 and hence they must be equal for all s.

3. **Proof of Theorem 1.** We refer to equation (39) in [1] and note that it is valid for every character γ modulo k. This gives us the relation

(5)
$$L(1-s,\chi) = f(s,\chi)L^*(s,\chi)$$

where

$$f(s,\chi) = (2\pi)^{-s}\Gamma(s)k^{s-1}\{e^{-is\pi/2} + \chi(-1)e^{is\pi/2}\}.$$

If $L(s, \chi)$ satisfies the functional equation (1) we also have

(6)
$$L(1-s,\chi) = f(s,\chi)G(\chi)L(s,\bar{\chi}).$$

From (5) and (6) we find $G(\chi)L(s, \bar{\chi})=L^*(s, \chi)$ for all s. Therefore, by Lemma 2, χ is primitive.

REFERENCES

- 1. Tom M. Apostol, Dirichlet L-functions and character power sums, J. Number Theory 2 (1970), 223-234. MR 41 #3412.
- 2. ——, Euler's φ -function and separable Gauss sums, Proc. Amer. Math. Soc. 24 (1970), 482–485. MR 41 #1661.

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CALIFORNIA 91109