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A PROPERTY OF ARITHMETIC SETS

HISAO TANAKA

ABSTRACT. We shall show that every nonempty countable
arithmetic subset of N* contains at least one element o such that the
singleton {a} itself is arithmetic. The proof is carried out by using a
method in classical descriptive set theory.

It is known that (*) if no member of a nonempty X set E is hyper-
arithmetic then E contains a perfect subset. (In this note, sets mean sub-
sets of N—the set of all 1-place number-theoretic functions which we
identify with Baire zero-space.) In fact, every X} set with a nonhyper-
arithmetic element contains a perfect subset. (See, e.g., Harrison [2,
Theorem 2.12] and Mathias [4, T3200].) In what follows, we shall show
that an arithmetic counterpart of the proposition (*) holds true:

THEOREM 1. If no member of a nonempty arithmetic set A is an arith-
metic singleton, then A contains a perfect subset.

It is evident that one can not replace “arithmetic singleton” by “arith-
metic element” in our theorem.

T. G. McLaughlin has asked the following question (unpublished):
Let A be a nonempty countable arithmetic set. Then, must some member
of A be an arithmetic singleton? Now we can obtain an affirmative
answer to this question as a direct corollary of our theorem, thus:

COROLLARY 2. If A is a nonempty countable arithmetic set, then A
contains at least one arithmetic singleton.

Since every uncountable arithmetic set (in fact, every classical uncount-
able analytic set) contains a perfect subset, Corollary 2 is equivalent to
Theorem 1. I do not know whether every member of a countable arith-
metic set is an arithmetic singleton. This is also a problem presented by
McLaughlin.

PRrOOF OF THEOREM 1. We shall illustrate for the case that A4 is a I1 set.
Proof is analogous for the other cases. Note that if 4 is a 9, set then we
can reduce it to the case of IT%.
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Now let 4 be a set defined by

A = {ae NV | (Vx)(@yo)(Vx)@y)R(@ X0 X15 Yo Y1)}
where R is 1. Then we have

o € A<= (3B)AB(Vx0)(Vx)R(x, Xo, X1, Bo(Xo)> B1(Xos X1))
<=>ARV)R(x, (x)o, (x)1, BUX)0N: BU(X)0s ()15 1)),
where {(ay,a;,",a)=po° - pi*---pex and p, is the (i+1)st prime
number. (For notations used in this note, we mostly borrow from Kleene
[3].) Let R’ and R” be predicates defined as follows:
R'(a, 5) <> [Seq(s) A Lh(s) = ((Lh(s))o, (Lh(s)),, 2)
— R(a, (Lh(s))o, (Lh(s))1, exp(s, ((Lh(s))o)) — 1,
exp(s, ((Lh(s))o, (Lh(s))1, 1)) — 1),
where exp(s, i)=(s),. And
R”(a, S) @(Vi)ith(s)R'(oc, rstr(s, l)),
where
rstr(s, i) = T] pi*, if Seq(s) A i < Lh(s),

k<i

=1, otherwise.

Then R” has the following properties:

(1) aed<=>3B)(Vx)R"(, p(x)),

(2) R” is 1 and hence for each sequence number s, the set E,=
{&|R"(«, 5)} is a closed set, and

(3) the Souslin system 6={Es|Seq(s)} is monotonic; that is, for all g
and x, Eg41)S Eg)-

Now, as is usual with classical descriptive set theory, for a given
sequence number 7(m), we shall define a set 47™ as follows:

4 x € A7™ <> @BNVX)R"(x, 7(m) * f(x)).
Then we have

o € A7 <> ABNV XNV )iz msoR (@, T8tr(7(m) * f(x), 1)
<> (Vi)iz R (o 7)) A @BYVDR (o, 7(m) » (D))
< (Vi)igmli = (Do (D> 2)
— R(@, (o> (1> YEDY), Y Doy (D> DY)]
A@BYim + i = ((m + Do, (m + 1)y, 2)
= {m + Do, (m + D)y, 1) <m
— R(a, (m + i)y, (m + i)y, y({(m + D)),
y((m + i), (m + i)y, 1)))}
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A{m + i) < m A ((m + Doy (m + D)y, 1) Z m
— R, (m + D)o, (m + Dy, 7((m + i))),
BU(m + i)e, (m + i), 1) — m))}
A {<(m + Dy =zm
— R(a, (m + i)g, (m + i)y, B({(m + i)y — m),
Bm + i), (m + i)y, 1) — m)}]:

The second member of the outermost conjunction in the latter formula
is equivalent to

(3B @BV x0)(V x1) [{(x0, X1, 1) <m— R(at, X9, X1, ¥({X0)), ¥ ({Xo, X1, 1)))}
A {(xo) < m A (xg, X1, 1) Zm
— R(, xq, X1, Y({X0)), B1((Xps X1 1) — m))}
A{{xp) = m
— R(a, Xo, X1, Bo, ((x0) — M), Br({Xgs X1, 1) — m))}]
<> (Vx)Ape)(Vx) By )[{(x, X1, 1) <m
= R(at, Xg, X1, Y((X0))s Y ((Xgs X1 D))}
A {{xg) < m A (xp, X1, 1) Z m— R(, X, X1, Y((Xo)), YD}
A {(xg) = m — R(, Xo, Xy, Yoo YOI

(Note that $(m) is a given fixed sequence number.) Therefore, for each
sequence number s, 4° is an arithmetic subset of N N too. Further, by the
definition (4) we have

@

5 Alao.arae] — U A[ao.ax.'".ak.n]’
n=0
where we denote (@y+1,a,+1, -+, a,+1) by [ay, a3, - -, a,].

Now suppose that no member of 4 constitutes an arithmetic singleton.
Let aed. Since 4=J;o A™, there is an n, such that acA™. 4" does
not contain any arithmetic singleton, since its overset 4 does not. As seen
above, A" js also an arithmetic set and hence it contains no isolated
elements. Therefore A" is dense-in-itself. So, for each number m,,
A1 N§(&([m,])) is nonempty and dense-in-itself, where d(s) denotes the
Baire interval determined by a sequence number s. Let us put

Bl = A" and  Fipu, = Epay

for all m,. From each set B N§(a([m,])) we can choose an element
®m,) Such that the ogy y’s satisfy the following conditions:

Ofmg] 7 %y Xpmo) 72 Apmey  If Mg 7% My,
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Since BI™l=|J_, A™'™, for each m, there is an n; such that o, ;€
Ao ™1 Let us put

[mo, — . —
Bt il = gl ™I and F[mo,mll - E["o-nﬂ

for all m,. Then B['”o'"’llné(&[mol([mo-i-ml+1])) is nonempty and dense-
in-itself. From each set B["‘°”"1]f\6(&[m0]([mo+m1+1])), we can choose an
U[m,,m,1 SUCh that apn  m s satisfy the following conditions:

Xmo,m1] # o fmo,m1] # Xgmo1>
XLmo,my] # Xmo,m1] if [mOa ml] # [m({)a mll]

And so on. Thus we obtain elements op  m,,..., mg€A for k, m;=0,1,
2,- -+, and they possess the following properties:

(6) K, me] 7 Xpmiy,omy AL [Mos = =5 My # [mg, - -+, mj],

(7) Lmgeee i) € Blmo.-.mil _ A[no_...,nklg E[no,--~,nk] — F[mo,m

where [ng, * -+, n,] is determined by [my, - - -, my],
(8) a[mo,"-,mk,mk+1] € 6(&[mo.'~-,mk]([m0 + Tt + mk+l + k + 1]))

Let Q={ozs|Seq(s) and Lh(s)>0}. Then Q is dense-in-itself and hence
its derived set Q' is a perfect set. Using (1)-(3) and (6)—(8) we can show
that Q' is contained in A. In proving this fact, note that each E, is a
closed set. (For details, see Hahn [1, pp. 356-358].) Therefore A4 contains
a perfect subset. This completes the proof of Theorem 1.

Since the final expression for aeA”™ in the preceding proof is also
I19, we have shown that if 4 is a nonempty II2 set with no Il singleton
then A contains a perfect subset.! Thus we obtain the following theorem:

THEOREM 3.  Every nonempty countable 5., set contains a 113, singleton.
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