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POSITIVE SOLUTIONS OF POSITIVE
LINEAR EQUATIONS

PAUL NELSON, JR.

Abstract. Let B be a real vector lattice and a Banach space

under a semimonotonic norm. Suppose T is a linear operator on

B which is positive and eventually compact, y is a positive vector,

and A is a positive real. It is shown that (XI—TY1y is positive if,

and only if, y is annihilated by the absolute value of any generalized

eigenvector of T* associated with a strictly positive eigenvalue not

less than /. A strictly positive eigenvalue is a positive eigenvalue

having an associated positive eigenvector. For the case of B=L"

this yields the result that (A/— T)~ly±i0 if, and only if, y is

almost everywhere zero on a certain set which depends on X but is

otherwise fixed.

In some fields of applied mathematics (e.g., radiative transfer, neutron

transport) there occur conditional equations of the form

(1) lv = Tx + y,

in which the parameter A, the known element y, and the linear operator

T are all positive, in the respective appropriate senses, and one wishes,

for physical reasons, to conclude existence of a positive solution, x. The

theorem given below has an obvious application to such problems. Its

statement and proof are the primary purpose of this note.

Before stating the result, we describe the setting within which (1) is

considered. The terminology and notation used is that of Day [1]. Let B

be a real Banach space, and denote by A a closed cone in B such that B is a

vector lattice under the partial order induced by K. We further suppose

that the norm on B has, relative to the order induced by K, the property

termed semimonotonic by Krasnosel'skil [2]; that is, there exists a positive

real constant M such that the situation O^x^y implies ||x||^A/||j||.

This property is the only connection which we require between the order

and the norm. For zeB we denote z++z~=(zV0) — (zaO) by \z\, with

a similar notation for the conjugate space B*. For z*eB* and zeB,

we will generally denote z*(z) by (z, z*). The linear operator T is defined

on B, is eventually compact (Tn is compact for some positive integer «),
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and is positive in the sense that z^O implies Tz^O. Let A1>A2>

• • ->0 denote the set, either finite or countably infinite, of positive

eigenvalues of T which have an associated positive eigenvector. The

conjugate of T is denoted T*. Then the main result is as follows.

Theorem. If A^O and y^O, then (1) has a solution x^.0 if, and only

if, (j, \h\)=0 for every heB* such that (Xt — T*)ph=0 for some X>.Xand
some positive integer p.

The remainder of this note is largely an outline of a proof of this

theorem. If the {AJ comprised all of the positive eigenvalues of T, and if

the condition (y, \h\)=0 were replaced by (j, h)=0, then the theorem

would be an easy consequence of well-known results. However, it is

precisely these extensions which yield the following interesting consequence

of the theorem.

Corollary. Suppose B=L"(fi), 1^/j><co, where the measure space

underlying the measure fi is totally a-finite if p=\. Then to each Xi there

is a measurable set Sit unique to within a null set, such that (1) has a

nonnegative solution x if, and only if, the representatives of y are almost

everywhere zero on Si for every i such that X^X.

The terminology of the corollary is that of Haimos [3]. The restrictions

serve to give an adequate representation theory for the conjugate space of

B [4]. It suffices to take for S{ the union of the sets of support of repre-

sentatives of a maximal linearly independent set of equivalence classes z

satisfying (Af—r*)"z=0 for some positive integer p. A similar corollary

holds for other spaces whose conjugates have a known representation.

In the case of neutron transport theory the sets S( can be interpreted as

the subset of the system phase space such that source neutrons originating

therein excite the critical state associated with Xt. In this context the

result is, roughly, of interest only for systems with loosely coupled parts,

as otherwise the collection {AJ can be shown to be a singleton set by, say,

an adaptation of the treatment of Kreln and Rutman [5] (see [6] for an

example of a result of this type). Sufficient conditions for the integral

operator governing neutron transport in a slab to be eventually compact

in a certain L1 space are given in [7].

The following simple lemma is the key to our proof of the above

theorem.

Lemma. Let Q be a positive linear operator defined on B and given by

the formula

Qz=I (z, y?)yi,
<=i
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where the {yt} are linearly independent. Suppose z^O. Then Qz=0 if, and

only if, (z, \y*\)=0for z=l, ■ ■ ■ , n.

Proof. The direct assertion is obvious. For the converse, suppose,

contrariwise, that there is some z^O such that Qz=0 but (z, | yf\)>0 for

some i. Then we have (z, jf+)>0. But [1, p. 98],

(z, y*+) = sup {(m, yf) 10^U £ z},

whence there is some u such that O^m^z and (w, j*)^(z, j*+)/2>0. Thus

Öwt^O, and therefore ßw<0 since w^z implies Qu^Qz. But Qu^.0,

since h^O and ß is positive. Thus we have a contradiction, and the lemma

is proved.

We now turn to the proof of the theorem. First of all note that existence

of a nonnegative solution, x, of (1) is equivalent to convergence of the

Neumann series

(2) 2 Tnyßn+\

If (2) converges then its sum is obviously such a solution. Conversely,

any such solution must majorize the sequence of partial sums of (2).

The sequence of partial sums is then norm bounded, by semimonotonicity,

and therefore contains a convergent subsequence, by eventual compact-

ness. But semimonotonicity implies that a monotone sequence which

contains a convergent subsequence must be convergent itself.

We now replace Fand B by their standard complexification, but without

changing the notation. Now, for arbitrary fixed yeK, there is some real

number a (^reciprocal radius of convergence) such that (2) converges if

|A|>aand diverges if |A|<a. Furthermore, by standard arguments of the

type used in connection with the abstract Pringsheim's theorem [8], [9], a

is itself a singular point of the analytic function of 1 defined by (2). But

this analytic function is Rxy, 7?^=resolvent of T. Thus a is a spectral

point of T, and hence an eigenvalue of T.

We now know that the reciprocal radius of convergence of (2) is some

positive eigenvalue of T. We inquire as to which y lead to the value Xx for

this reciprocal radius of convergence. (The largest positive eigenvalue of

Tis K [8].)
It is known that Rxy is singular at 1=XX if, and only if, Pxy^0, where Px

is the projection onto JV[(A1-r)v] along 3l[(A1-J)v], JV=null-space,

31=range, v=index of Fat Xx = smallest integer k such that J\P[(A, — T)k] =

Jt[(X1-T)k+1]. But Pxz, for arbitrary zeB, has the form [10]

(3) PlZ = 2 I(z, (A - r*)^*)^ - 7)"'-%
i=l j=l
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where \<pxz%- ■ -z%^k=v, (X1-T*y<y? = {X1-T)f'>yi = 0, and the

Vk-fy^yt, ßi—T*¥yf form, respectively, a basis for JV,[(A1-7)V] and
JV[(A,-r*)vj.

Now we recall the theorem of Karlin [8] to the effect that {T~Xiy~^Pl

is a positive operator. (A detailed proof of this result is given in [6].) On

applying (J—A1)v_1 to (3), and using the lemma proved above, we

conclude that, for zg:0, (T— X1)v'1P1z=0 is equivalent to

(4) (z, |(A - T*y~lyf\) = 0   for A;-*

Let Kt be the set of z in K which also satisfy (4). Then AT, is easily seen

to be a cone. If B^K^—K^, then B1 is a Banach space and its norm is

semimonotonic relative to the order induced by Kv Furthermore, it is

fairly easy to show that Bx is invariant under T, that the index at Xx of T

restricted to 5, is v^v— 1, and that, for z in K, {T—X^P^^O for some

p such that v^p^v— 1 is equivalent to z^A^. We now apply the argument

of the preceding paragraph to T\BV After at most v such steps, we reach

the conclusion that, for z^O, P1z=Q is equivalent to

(5) (z, \(X, - T*yyi\) = 0   for 1 £p ^ fr, 1'< k.

Denote by K2 the cone consisting of those z in K such that (5) holds,

and let B2 = K2—K2. Then 52is F-invariant. If T\B2is quasi-nilpotent, then

the results already proved establish the theorem. Otherwise let X2 (>0) be

the largest eigenvalue of T\B2. Since T\B2 has a (K2-) positive eigenvector,

it must be the case that X2^X2. But the positive eigenvector of Tassociated

with X2 is in A^2, hence X2^X2- Thus X2=X2. Applying the process in the

two preceding paragraphs to T|i?2, we conclude that, for zeA^1; P2z=0 is

equivalent to the obvious condition corresponding to (5). The general

proof of the theorem is accomplished by repetition of this procedure.

Acknowledgment. This work is an extension of a portion of a Ph.D.

dissertation submitted to the University of New Mexico. The author

gratefully acknowledges the benefit of many helpful discussions with his

advisor, Professor G. Milton Wing.

References

1. M. M. Day, Normed linear spaces, Ergebnisse der Mathematik und ihrer Grenz-

gebiete, Heft 21, Springer-Verlag, Berlin, 1958. MR 20 #1187.

2. M. A. Krasnosel'skil, Positive solutions of operator equations, Fizmatgiz, Moscow,

1962; English transl., Noordhoff, Groningen, 1964. MR 26 #2862; MR 31 #6107.
3. P. R. Haimos, Measure theory, Van Nostrand, Princeton, N.J., 1950. MR 11,

504.

4. A. E. Taylor, Introduction to functional analysis, Wiley, New York, 1958. MR 20

#5411,



1972] positive solutions of positive linear equations 457

5. M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a

Banach space, Uspehi Mat. Nauk 3 (1948), no. 1 (23), 3-95; English transl., Amer. Math.

Soc. Transl. (1) 10 (1962), 199-325. MR 10, 256; MR 12, 341.
6. P. Nelson, Jr., An investigation of criticality for energy-dependent transport in

slab geometry, Ph.D. Dissertation, University of New Mexico, Albuquerque, New

Mexico, 1969.

7. -, Subcriticality for transport of multiplying particles in a slab, J. Math. Anal.

Appl. 35 (1971), 90-104.
8. S. Karlin, Positive operators, J. Math. Mech. 8 (1959), 907-937. MR 22 #4965.
9. H. H. Schaefer, Topological vector spaces, Macmillan, New York, 1966. MR 33

#1689.
10. A. C. Zaanen, Linear analysis, North-Holland, Amsterdam, 1964.

Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Ten-

nessee 37830


