A DECOMPOSITION THEOREM FOR CLOSED COMPACT CONNECTED P.L. n-MANIFOLDS

B. G. CASLER

ABSTRACT. Let M be a compact connected P.L. n-manifold without boundary. Then M is the union of 3 sets E_1 , E_2 and F where E_i , i=1, 2, is homomorphic to the interior of an n-ball and F is the P.L. image of an (n-1)-sphere. Further each point of F is a limit point of E_1 and E_2 .

It is well known that an n-sphere is the union of three disjoint sets E_1 , E_2 , F where E_1 and E_2 are topologically equivalent to an Euclidean n-space and F is topologically equivalent to an (n-1)-sphere. The set F can be thought of as an embedded (n-1)-sphere in an n-sphere. In this note it will be shown that every compact connected n-manifold has a very similar property. Namely,

THEOREM. Every compact connected P.L. n-manifold, without boundary n>0, is the union of three disjoint sets E_1 , E_2 and F where

- (i) E_i is topologically equivalent to E^n ,
- (ii) F is the P.L. image of S^{n-1} ,
- (iii) each point of F is a limit point of E_i , i=1, 2.

PROOF. Let M be a closed compact connected combinatorial n-manifold of dimension ≥ 3 . (The theorem is trivial for dimension 1 and an obvious modification of the proof for dimension ≥ 3 will yield a proof of the theorem for dimension 2.) Let T be some fixed triangulation that is the second barycentric subdivision of some triangulation of M. Choose some n-simplex σ in T. It was shown in [1] that there is a spine K of $M \setminus \text{Int}(\sigma)$ such that

- (i) the closure of each component of each intrinsic skeleton is a combinatorial cell triangulated by the 3rd barycentric subdivision, T^3 , of T,
- (ii) if p is a vertex of K, then the closure of each component of $St(p, M)\backslash K$ is a cell,
 - (iii) K is of dimension (n-1) at each point of K.

Received by the editors April 9, 1971.

AMS 1970 subject classifications. Primary 57C05.

Key words and phrases. P.L. manifold, spine, decomposition.

624 B. G. CASLER

Let $C_{(n-1),j}$ and $C_{(n-2),j}$ be the components of the intrinsic (n-1)-skeleton and the intrinsic (n-2)-skeleton of K respectively. If $C_{(n-2),j} \subset \operatorname{Cl}(C_{(n-1),i})$, let $A_{i,j}$ be a polyhedral arc from a point $p_i \in \operatorname{Int}(\operatorname{Cl}(C_{(n-1),i}))$ to a point of $q_j \in \operatorname{Int}(\operatorname{Cl}(C_{(n-2),j}))$. Since dimension of $M \leq 3$, it may be assumed that $\operatorname{Int}(A_{i,j}) \cap \operatorname{Int}(A_{r,s}) = \emptyset$ if $i \neq r$ or $j \neq s$ and that $\operatorname{Int}(A_{i,j}) \subset \operatorname{Int}(\operatorname{Cl}(C_{(n-1),i}))$. Let H' be a maximal tree in the union of the $A_{i,j}$'s. Let $H \subset H'$ be a subtree such that if $q_j \in H$, q_j is of order at least 2. For each $q_j \in H$, let $\operatorname{St}(q_j M, T^5) = B_j$. Because of properties of K, $B_j \cap \operatorname{Cl}(C_{(n-1),i})$ is either an (n-1)-cell or empty. If $(B_j \cap C_{(n-1),i}) \cap H$ contains an arc A such that $q_j \in A$ then call $\operatorname{Cl}(B_j \cap C_{(n-1),i})$ a good cell. Otherwise call $\operatorname{Cl}(B_j \cap C_{(n-1),i})$ a bad cell.

Let K' be K with the interiors of all bad cells deleted. Since $Cl(B_j \cap C_{(n-1),i})$ is a cell, the closure of each component of the intrinsic (n-1)-skeleton of K' is a cell. Let K^* be the union of all the boundaries of all the closures of the components of the intrinsic (n-1)-skeleton of K'. Let $L=Cl(K'\setminus N(K^*,M,T^5))$. $(N(K,L,T^i)$ denotes the union of the closed simplices of L triangulated by T^i that have a vertex in K.) Since L is the union of (n-1)-cells $L \cup H$ collapses to H. Let $(\bigcup B_i) \cup N(L,M,T^5)=Q$. By construction $M\setminus Int(\sigma)$ collapses to Q. Since the neighborhood was taken in the 5th barycentric subdivision each point of K^* is accessible from σ . Hence the point set boundary of Q is the P.L. image of S^{n-1} and $M\setminus Q$ is homeomorphic to E^n . Since $L\cup H$ is collapsible, Int(Q) is homeomorphic to E^n and the theorem follows.

REFERENCES

1. B. G. Casler and T. J. Smith, Standard spines of compact connected combinatorial n-manifolds with boundary (to appear).

DEPARTMENT OF MATHEMATICS, LOUISIANA STATE UNIVERSITY, BATON ROUGE, LOUISIANA 70803