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QUOTIENT GROUPS OF TOPOLOGICAL GROUPS
WITH NO SMALL SUBGROUPS

sidney a. morris

Abstract.   It is shown here that a quotient group of a topolog-

ical group with no small subgroups can have small subgroups.

It is well known that a quotient group of a Lie group is a Lie group, or

equivalently ([2], [6]) that a quotient group of a locally compact group

with no small subgroups is a locally compact group with no small sub-

groups. Irving Kaplansky [3] asks: if G is a topological group with no

small subgroups and //is a closed normal subgroup of G, is GjH (neces-

sarily) a group with no small subgroups? We answer the question in the

negative here.

Theorem. IfX is any metric space and F{X) is the free abelian topologi-

cal group on X [4], then F(X) has no small subgroups.

Proof. By the Arens-Eells embedding theorem ([5], [1]) X can be

embedded isometrically in a normed linear space A as a Hamel basis.

Let S be the subgroup of (the additive group structure of) N generated

by X. We claim that A, and hence S, has no small subgroups. This is seen

by noting that the unit ball of N contains no nontrivial subgroups.

Since F(X) is the free abelian topological group on X, there exists a

continuous homomorphism/ of F(X) onto S which acts identically on X.

Using the fact that A is a Hamel basis for N, we see that/is an algebraic

isomorphism. Consequently F(X) has no small subgroups.

Example. Let X be the cartesian product of a countably-infinite

family of topological groups, each of which is topologically isomorphic

to the circle group with its usual topology. Clearly Ais a topological group

with small subgroups.

Since A is a metric space, by the above theorem, F(X) has no small

subgroups. Finally we note that, by Theorem 23 of [4], A is a quotient

group of F(X).
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