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REPRESENTATIONS  OF  STRONGLY

AMENABLE C*-ALGEBRAS

IOHN BUNCE

Abstract. B. E. Johnson has introduced the concept of a

strongly amenable C*-algebra and has proved that GCR algebras

and uniformly hyperfinite algebras are strongly amenable. We

generalize the well-known Dixmier-Mackey theorem on amenable

groups by proving that every continuous representation of a strongly

amenable C*-algebra is similar to a ^representation. As an appli-

cation, we show that every invariant operator range for a Type I

von Neumann algebra comes from an operator in the commutant.

Introduction. Let A be a complex Banach algebra. Then a complex

Banach space X is a Banach ^(-module if it is a two-sided ^-module and

there exists a positive real number k such that for all aeA and xeX we

have

IIojcII <k\\a\\ ||jc||    and    ||xa|| ^ k \\x\\ \\a\\.

If X is a Banach /1-module, then the dual space X* becomes a Banach

^4-module if we define for aeA,feX* and xeX,

iaf)ix) =fixa),    ifa)ix) =fiax).

A derivation from A into X* is a complex linear map D from A into X*

such that Diab)=aDib)+Dia)b for all, a, beA. If feX*, the function

ô(f) from A into X* given by d(f)ia)=af—fa is called the inner derivation

induced by/ We recall that a topological group G is said to be amenable

if there is a left invariant mean on the space of bounded continuous com-

plex functions on G [5]. B. E. Johnson has proved [7, Theorem 2.5] that

if G is a locally compact topological group, then G is an amenable group

if and only if for all 7'((7)-modules A" and derivations D of 71(G) into X*,

we have that D is the inner derivation induced by an element of X*.

Johnson then defined a Banach algebra A to be amenable if every derivation

of A into X* is inner for all Banach ^-modules X [7, §5]. Let A be a C*-

algebra and let Ae be the C*-algebra obtained by adjoining the identity e.

Johnson then makes the following definition [7, §7].
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Definition. The C*-aIgebra A is strongly amenable if, whenever X is

a Banach ^-module and D is a derivation of A into X*, there is a

feco{D(u)u*:ueU(Ae)} with D=—è(f), where X is made into a unital

/Ig-module by defining xe=ex=x for allxeÀ', D is extended to Ae by defining

Z>(e)=0, U(Ae) is the unitary group of Ae, and co 5 denotes the vr*-closed

convex hull of a set 5 contained in X*.

If A has an identity, A is strongly amenable if and only if the definition is

satisfied for all unital /1-modules X with Ae replaced throughout by A

[7, Proposition 7.2]. Johnson proved that the class of strongly amenable

C*-algebras contains all GCR C*-algebras, and all uniformly hyperfinite

C*-algebras [7, Theorem 7.9 and Proposition 7.6]. He also proved [7,

Proposition 7.8] that if G is an amenable locally compact group, then the

C*-group algebra [2, 13.9] is strongly amenable.

It is a well-known theorem, due to Dixmier [1], that every uniformly

bounded strongly continuous representation of an amenable group on a

Hubert space is similar to a unitary representation. The main result of this

paper is that every continuous representation of a strongly amenable C*-

algebra on a Hubert space is similar to a ^representation.

The main results.

Lemma 1. Let A be a strongly amenable C*-algebra, X a Banach A-

module, and let C={feX*:af=fa for all aeA}. Then for allfeX*, Cn

co{ufu* :ueU(Ae)} is nonempty.

Proof. The proof is a generalization of a proof of Johnson's [7, just

before Proposition 7.14]. Let/be in X* and let à(f) be the inner derivation

defined by/ Then there is a geco{ô(f)(u)u*:ueU(Ae)} such that ó(f)=

-ô(g). But ö(f)(u)u* = ufu*-f so f+geco{ufu*:ueU(At)}. Also,

à(f)(a)=-à(g)(a) for all aeA, so af-fa=ga-ag, or a(f+g) = (f+g)a.

Thus f+geC.
We recall that a linear functional/on a C*-algebra A is called central if

f(ba)=f(ab) for all a, beA.

Corollary 1. If A is strongly amenable C*-algebra with identity, then

A has positive central functionals of norm one and hence A has nonzero

factor ^-representations of finite type.

Proof. If/is any state of A, then by Lemma 1 (with X=A) there is a

geco{ufu* :ueU(A)} such that g(ab)=g(ba) for all a, beA. Then g is clearly

positive and g(e) = l. The rest follows from [2, 6.8].

Since GCR algebras have only Type I ^representations and are strongly

amenable, the following corollary is immediate.

Corollary 2. If A is a GCR algebra with identity, then A has nonzero

finite-dimensional ""-representations.
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Let BiH) be the bounded operators on Hubert space H and let K~iH) be

the compact operators on H.

Corollary 3. The Calkin algebra BiH)¡K~iH) (for H separable Hilbert

space) is not strongly amenable, so B(H) is not strongly amenable.

Proof. Let p be a projection in B(H) with infinite-dimensional range

and null-space, so that/? is equivalent to the identity in B(H). Then let p

be the image of p in B(H)¡K(H). Since B(H)jK(H) is simple [10, p. 291]

it is clear that in any ^representation p will be a nontrivial projection

equivalent to the identity. Thus every ""-representation is infinite and

Corollary 1 implies that B(H)fKiH) is not strongly amenable. Since

quotients of strongly amenable C*-algebras are strongly amenable [7, 7.3],

BiH) is not strongly amenable.

For A a C*-algebra, let A® A be the completion of A® A in the greatest

cross-norm. Then (A®A)* is the space of bounded bilinear functionals on

Ax A [6, p. 30]. We see that A® A becomes a Banach /i-module if we define

for a, b, ceA,

a(b ® c) = ab ® c,       (b ® c)a = b ® ca.

Hence (A® A)* becomes a Banach ^(-module under the dual action: if

fe(A®A)* and a, b, ceA,

(af)(b®c) =f(b ® ca),       (fa)(b ® c) =f(ab ® c).

Let C={fe(A®A)*:af=fa for all aeA}.
We can also make A®A and (A®A)* into Banach ^-modules by de-

fining forfe(A®A)* and a, b, ceA:

a ° (b ® c) = b ® ac,       (b ® c) ° a = ba ® c,

(a °f)(b ® c) = /(6a <g> c),        (/= fl)(6 <g> c) = /(6 <g> ac).

The map 7 in the following proposition takes the place of the invariant

mean which is present in amenable groups.

Proposition 1. Let A be a strongly amenable C*-algebra with identity

e. Then there exists a linear map T: (A<giA)*^>-C such that:

(a) T(f)eco{ufu*:ueU(A)}for allfe(A®A)*, and

(b) T(a°f)=aoT(f) and T(f°a)=T(f)oafor all aeA andfe(A®A).

Proof. Let Y=(A®A)*®(A®A) be made into an yi-module with

operations (f®t)a=f®(ta), a(f®t)=f®(at), for fe(A®A)*, te(A®A), and

aeA. Let Z be the closed submodule of Y spanned by elements of the form

(a°f)®t—f®(toa) and (foa)®t—f®(a°t). Define an element F of Y* by

F(f®t)=f(t),fe(A®A)*, te(A®A). Then F is zero onZ, so if we let X=
YjZ, we can regard F as an element of X*. Then apply Lemma 1 to get an
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element T0 of X* such that aT0=T0a for all a in A, and r0e

co{uFu*: ueU(A)}. Then define a bounded endomorphism T of

(A®A)* by 7(/)(0=7,0((/®0~)> where (f®t)~ means the coset of f®t
in X. Then clearly T maps into C and satisfies (b). An application of the

strong separation theorem shows that (a) is satisfied.

We use the existence of the function T to prove our main result.

Theorem 1.   Every continuous representation of a strongly amenable

C*-algebra A on a Hilbert space is similar to a *-representation.

Proof. If V:A->B(H) is a continuous representation of A on H (i.e.,

Fis a continuous algebra homomorphism of A into the bounded operators

on a Hilbert space H), then V may be extended to the algebra Ae by

defining V'(a, X)=V(a)-\-X. Then V is a continuous representation of Ae,

and Ae is strongly amenable if A is strongly amenable [7, 7.3]. So it suffices

to assume that A has an identity and V(e)=e. Let x, yeH and define

fx,ye(A®A)* by

fx,y(a®b)=(V(a)x,V(b*)y).

We then define a new inner product on H by (x,y)i=T(fx-y)(e®e). Then

(x, y)1 is a bounded sesquilinear form on H, so there is a bounded operator

ReB(H) such that (Rx,y)=T(fxy)(e®e) for all x,yeH. Now T(fxx)e

co{ufx xu*:ueU(A)} and for ueU(A) we have

"fx.x"*(e ® *) =/*>* ® ") = II F(k*)x||2.

Then ||x||2=|| F(m)F(M*)x||2<||F||2||F(M*)x||2=||K||4||x||2, so

||F||-2||x||2^ ||F(m*)x||2^ ||F||2||x||2

for all ueU(A) and all xeH. Thus

\\V\\^\\xV^T(fxJ(e®e)^ || F||2 ||x||2.

Hence R is a positive invertible operator. Let S be the (positive) square

root of R, then (Sx, Sy)=T(fxy)(e®e). We now show that the represen-

tation V'(a)=SV(a)S~1 is a ^representation. Let ueU(A), zeH, a, beA and

compute:

fvM.M.uia ® ft) = W(«)*. r(ft*)K(«)z) = /,>« ® ií*é),

so that/r(u),.F(t()z=Mo/z z oU*. Then we have

(V(u)z, V(u)z\ = T(fv(u)z,v(u)z)(e ® e) = 7Tf« • L.y ° «*X« « *)

= n/,,2)(" ® "*) = (u*T(fzJu)(e ® e)

= r(/,.,)(e ® e) = (z, z\.
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Finally,

(V'(u)z, V'(u)z) = (SV(u)S~h, SV^S-^z) = (V(u)S-lz, V^S'^

= (S-'z, S-H\ = (z, z).

In the above computation we used the fact that 7 satisfies both parts of

property (b) in Proposition 1, and we used the fact that 7 maps into C.

So V is ""-preserving on the unitary elements of A, and since every element

of A is a linear combination of four unitary elements, we have that V is

a ""-representation.

Applications and remarks. J. Dixmier has asked the following question :

Let A<^B(H) be a von Neumann algebra. Suppose beB(H) is such that

b(H) is invariant for A'=the commutant of A. Then does there exist an

operator aeA with a(H)=b(H)l Using Theorem 1 we can answer this

question in the affirmative in a special case.

Proposition 2. Let A^B(H) be a strongly amenable C*-algebra. Let

beB(H) be such that b(H) is invariant under A. Then there is an operator

aeA' with a(H)=b(H).

Proof. The proof is almost exactly the same as a proof of C. Foias

[4, Lemma 8] which uses Dixmier's theorem for representations of

amenable groups. Since (66*)1/2 and 6 have the same range, we may

assume that 6_0. Now define a representation V:A-*B(H) as follows:

For de A, d(b(H))<=b(H), so if xeH, there is an unique vector y-enull (6)1

such that (db)(x)=by. Let V(d)x=y. Then V(d) is well defined, V(d) is
clearly linear, and V(d) has closed graph. So V(d)eB(H). Also V(d)(H)c

nu\\(b)± = (b(H))- and db=bV(d). It is then easily seen that V is linear

with closed graph and V(cd)=V(c)V(d). Hence V:A-*B(H) is a con-

tinuous representation, so by Theorem 1, there is a positive invertible

SeB(H) such that U(d)=SV(d)S~1 is a ""-representation. Let S^b=ua

be the polar decomposition of 5_16. Then bS~~1=au*, so b=au*S and

b(H)^a(H). Also bS1u=a, so a(H)^b(H) and a(H)=b(H). We will thus

be finished when we show that aeA'. Let deA. Then db=b V(d)=bS~xU(d)S,

so dbS~1=bS-1U(d) and dau*=au*U(d), or da=au*U(d)u for all deA.

So wé also have d*a=au*U(d*)u, and since U is a ""-representation we

have d*a=au*Vid)*u, or ad=u*Uid)ua. Then a2d=au*Uid)ua=da2. So

a2eA' and aeA'.

The following corollary is then immediate.

Corollary 4. Let Ac BiH) be a von Neumann algebra such that A'

contains a weakly dense strongly amenable C*-algebra B. Suppose beBiH)

is such that 6(//) is invariant for B. Then 6(//) is also invariant for A' and

there is an aeA with a(77)=6(/7).
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By [11] every Type I von Neumann algebra on a separable Hubert space

contains a weakly dense GCR algebra. So since GCR algebras are strongly

amenable, the above corollary covers the case when A is a Type I von

Neumann algebra on a separable Hubert space, as well as the case when A'

is a hyperfinite von Neumann algebra.

We close by remarking that Ehrenpreis and Mautner [3] give an example

of a GCR group G which has a uniformly bounded representation on a

Hubert space that is not similar to a unitary representation. Our Theorem

1 then implies that the induced representation of L1(G) is not continuous

in the C*-algebra norm. The author does not know of an example of a

continuous representation of a C*-algebra on a Hubert space that is not

similar to a ""-representation.
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