REPRESENTATIONS OF STRONGLY AMENABLE C*-ALGEBRAS

JOHN BUNCE

ABSTRACT. B. E. Johnson has introduced the concept of a strongly amenable C*-algebra and has proved that GCR algebras and uniformly hyperfinite algebras are strongly amenable. We generalize the well-known Dixmier-Mackey theorem on amenable groups by proving that every continuous representation of a strongly amenable C*-algebra is similar to a *-representation. As an application, we show that every invariant operator range for a Type I von Neumann algebra comes from an operator in the commutant.

Introduction. Let A be a complex Banach algebra. Then a complex Banach space X is a Banach A-module if it is a two-sided A-module and there exists a positive real number k such that for all $a \in A$ and $x \in X$ we have

$$||ax|| \le k ||a|| ||x||$$
 and $||xa|| \le k ||x|| ||a||$.

If X is a Banach A-module, then the dual space X^* becomes a Banach A-module if we define for $a \in A$, $f \in X^*$ and $x \in X$,

$$(af)(x) = f(xa), \quad (fa)(x) = f(ax).$$

A derivation from A into X^* is a complex linear map D from A into X^* such that D(ab) = aD(b) + D(a)b for all, a, $b \in A$. If $f \in X^*$, the function $\delta(f)$ from A into X^* given by $\delta(f)(a) = af - fa$ is called the inner derivation induced by f. We recall that a topological group G is said to be amenable if there is a left invariant mean on the space of bounded continuous complex functions on G [5]. B. E. Johnson has proved [7, Theorem 2.5] that if G is a locally compact topological group, then G is an amenable group if and only if for all $L^1(G)$ -modules X and derivations D of $L^1(G)$ into X^* , we have that D is the inner derivation induced by an element of X^* . Johnson then defined a Banach algebra A to be amenable if every derivation of A into X^* is inner for all Banach A-modules X [7, §5]. Let A be a C^* -algebra and let A_e be the C^* -algebra obtained by adjoining the identity e. Johnson then makes the following definition [7, §7].

Received by the editors May 14, 1971.

AMS 1970 subject classifications. Primary 46L05; Secondary 46L10, 46K10, 43A07. Key words and phrases. Amenable groups, strongly amenable C*-algebras, hyperfinite C*-algebras, GCR algebras, representations, invariant operator range.

[©] American Mathematical Society 1972

DEFINITION. The C^* -algebra A is strongly amenable if, whenever X is a Banach A-module and D is a derivation of A into X^* , there is a $f \in co\{D(u)u^*: u \in U(A_e)\}$ with $D = -\delta(f)$, where X is made into a unital A_e -module by defining xe = ex = x for all $x \in X$, D is extended to A_e by defining D(e) = 0, $U(A_e)$ is the unitary group of A_e , and co S denotes the w^* -closed convex hull of a set S contained in X^* .

If A has an identity, A is strongly amenable if and only if the definition is satisfied for all unital A-modules X with A_e replaced throughout by A [7, Proposition 7.2]. Johnson proved that the class of strongly amenable C^* -algebras contains all GCR C^* -algebras, and all uniformly hyperfinite C^* -algebras [7, Theorem 7.9 and Proposition 7.6]. He also proved [7, Proposition 7.8] that if G is an amenable locally compact group, then the C^* -group algebra [2, 13.9] is strongly amenable.

It is a well-known theorem, due to Dixmier [1], that every uniformly bounded strongly continuous representation of an amenable group on a Hilbert space is similar to a unitary representation. The main result of this paper is that every continuous representation of a strongly amenable C^* -algebra on a Hilbert space is similar to a *-representation.

The main results.

LEMMA 1. Let A be a strongly amenable C^* -algebra, X a Banach A-module, and let $C = \{f \in X^* : af = fa \text{ for all } a \in A\}$. Then for all $f \in X^*$, $C \cap co\{ufu^* : u \in U(A_e)\}$ is nonempty.

PROOF. The proof is a generalization of a proof of Johnson's [7, just before Proposition 7.14]. Let f be in X^* and let $\delta(f)$ be the inner derivation defined by f. Then there is a $g \in \operatorname{co}\{\delta(f)(u)u^*: u \in U(A_e)\}$ such that $\delta(f) = -\delta(g)$. But $\delta(f)(u)u^* = ufu^* - f$, so $f + g \in \operatorname{co}\{ufu^*: u \in U(A_e)\}$. Also, $\delta(f)(a) = -\delta(g)(a)$ for all $a \in A$, so af - fa = ga - ag, or a(f+g) = (f+g)a. Thus $f + g \in C$.

We recall that a linear functional f on a C^* -algebra A is called central if f(ba)=f(ab) for all $a, b \in A$.

COROLLARY 1. If A is strongly amenable C^* -algebra with identity, then A has positive central functionals of norm one and hence A has nonzero factor * -representations of finite type.

PROOF. If f is any state of A, then by Lemma 1 (with X=A) there is a $g \in co\{ufu^*: u \in U(A)\}$ such that g(ab) = g(ba) for all $a, b \in A$. Then g is clearly positive and g(e) = 1. The rest follows from [2, 6.8].

Since GCR algebras have only Type I *-representations and are strongly amenable, the following corollary is immediate.

COROLLARY 2. If A is a GCR algebra with identity, then A has nonzero finite-dimensional *-representations.

Let B(H) be the bounded operators on Hilbert space H and let K(H) be the compact operators on H.

COROLLARY 3. The Calkin algebra B(H)/K(H) (for H separable Hilbert space) is not strongly amenable, so B(H) is not strongly amenable.

PROOF. Let p be a projection in B(H) with infinite-dimensional range and null-space, so that p is equivalent to the identity in B(H). Then let \bar{p} be the image of p in B(H)/K(H). Since B(H)/K(H) is simple [10, p. 291] it is clear that in any *-representation \bar{p} will be a nontrivial projection equivalent to the identity. Thus every *-representation is infinite and Corollary 1 implies that B(H)/K(H) is not strongly amenable. Since quotients of strongly amenable C^* -algebras are strongly amenable [7, 7.3], B(H) is not strongly amenable.

For A a C^* -algebra, let $A \hat{\otimes} A$ be the completion of $A \otimes A$ in the greatest cross-norm. Then $(A \hat{\otimes} A)^*$ is the space of bounded bilinear functionals on $A \times A$ [6, p. 30]. We see that $A \hat{\otimes} A$ becomes a Banach A-module if we define for a, b, $c \in A$,

$$a(b \otimes c) = ab \otimes c, \qquad (b \otimes c)a = b \otimes ca.$$

Hence $(A \hat{\otimes} A)^*$ becomes a Banach A-module under the dual action: if $f \in (A \hat{\otimes} A)^*$ and $a, b, c \in A$,

$$(af)(b\otimes c) = f(b\otimes ca), \qquad (fa)(b\otimes c) = f(ab\otimes c).$$

Let $C = \{ f \in (A \hat{\otimes} A)^* : af = fa \text{ for all } a \in A \}.$

We can also make $A \hat{\otimes} A$ and $(A \hat{\otimes} A)^*$ into Banach A-modules by defining for $f \in (A \hat{\otimes} A)^*$ and $a, b, c \in A$:

$$a \circ (b \otimes c) = b \otimes ac,$$
 $(b \otimes c) \circ a = ba \otimes c,$ $(a \circ f)(b \otimes c) = f(ba \otimes c),$ $(f \circ a)(b \otimes c) = f(b \otimes ac).$

The map T in the following proposition takes the place of the invariant mean which is present in amenable groups.

PROPOSITION 1. Let A be a strongly amenable C^* -algebra with identity e. Then there exists a linear map $T:(A \hat{\otimes} A)^* \rightarrow C$ such that:

- (a) $T(f) \in co\{ufu^*: u \in U(A)\}\$ for all $f \in (A \hat{\otimes} A)^*$, and
- (b) $T(a \circ f) = a \circ T(f)$ and $T(f \circ a) = T(f) \circ a$ for all $a \in A$ and $f \in (A \hat{\otimes} A)$.

PROOF. Let $Y = (A \hat{\otimes} A)^* \hat{\otimes} (A \hat{\otimes} A)$ be made into an A-module with operations $(f \otimes t)a = f \otimes (ta)$, $a(f \otimes t) = f \otimes (at)$, for $f \in (A \hat{\otimes} A)^*$, $t \in (A \hat{\otimes} A)$, and $a \in A$. Let Z be the closed submodule of Y spanned by elements of the form $(a \circ f) \otimes t - f \otimes (t \circ a)$ and $(f \circ a) \otimes t - f \otimes (a \circ t)$. Define an element F of Y^* by $F(f \otimes t) = f(t)$, $f \in (A \hat{\otimes} A)^*$, $t \in (A \hat{\otimes} A)$. Then F is zero on Z, so if we let X = Y/Z, we can regard F as an element of X^* . Then apply Lemma 1 to get an

element T_0 of X^* such that $aT_0=T_0a$ for all a in A, and $T_0\in \operatorname{co}\{uFu^*\colon u\in U(A)\}$. Then define a bounded endomorphism T of $(A\hat{\otimes}A)^*$ by $T(f)(t)=T_0((f\otimes t)^-)$, where $(f\otimes t)^-$ means the coset of $f\otimes t$ in X. Then clearly T maps into C and satisfies (b). An application of the strong separation theorem shows that (a) is satisfied.

We use the existence of the function T to prove our main result.

Theorem 1. Every continuous representation of a strongly amenable C^* -algebra A on a Hilbert space is similar to a *-representation.

PROOF. If $V:A \to B(H)$ is a continuous representation of A on H (i.e., V is a continuous algebra homomorphism of A into the bounded operators on a Hilbert space H), then V may be extended to the algebra A_e by defining $V'(a, \lambda) = V(a) + \lambda$. Then V' is a continuous representation of A_e , and A_e is strongly amenable if A is strongly amenable [7, 7.3]. So it suffices to assume that A has an identity and V(e) = e. Let $x, y \in H$ and define $f_{x,y} \in (A \hat{\otimes} A)^*$ by

$$f_{x,y}(a \otimes b) = (V(a)x, V(b^*)y).$$

We then define a new inner product on H by $(x, y)_1 = T(f_{x,y})(e \otimes e)$. Then $(x, y)_1$ is a bounded sesquilinear form on H, so there is a bounded operator $R \in B(H)$ such that $(Rx, y) = T(f_{x,y})(e \otimes e)$ for all $x, y \in H$. Now $T(f_{x,x}) \in co\{uf_{x,x}u^*: u \in U(A)\}$ and for $u \in U(A)$ we have

$$uf_{x,x}u^*(e \otimes e) = f_{x,x}(u^* \otimes u) = ||V(u^*)x||^2.$$

Then $||x||^2 = ||V(u)V(u^*)x||^2 \le ||V||^2 ||V(u^*)x||^2 \le ||V||^4 ||x||^2$, so

$$||V||^{-2} ||x||^2 \le ||V(u^*)x||^2 \le ||V||^2 ||x||^2$$

for all $u \in U(A)$ and all $x \in H$. Thus

$$||V||^{-2} ||x||^2 \le T(f_{x,x})(e \otimes e) \le ||V||^2 ||x||^2.$$

Hence R is a positive invertible operator. Let S be the (positive) square root of R, then $(Sx, Sy) = T(f_{x,y})(e \otimes e)$. We now show that the representation $V'(a) = SV(a)S^{-1}$ is a *-representation. Let $u \in U(A)$, $z \in H$, $a, b \in A$ and compute:

$$f_{V(u)z,V(u)z}(a \otimes b) = (V(a)V(u)z, V(b^*)V(u)z) = f_{z,z}(au \otimes u^*b),$$

so that $f_{V(u)z,V(u)z} = u \circ f_{z,z} \circ u^*$. Then we have

$$(V(u)z, V(u)z)_{1} = T(f_{V(u)z,V(u)z})(e \otimes e) = T(u \circ f_{z,y} \circ u^{*})(e \otimes e)$$

$$= T(f_{z,z})(u \otimes u^{*}) = (u^{*}T(f_{z,z})u)(e \otimes e)$$

$$= T(f_{z,z})(e \otimes e) = (z, z)_{1}.$$

Finally,

$$(V'(u)z, V'(u)z) = (SV(u)S^{-1}z, SV(u)S^{-1}z) = (V(u)S^{-1}z, V(u)S^{-1}z)_1$$

= $(S^{-1}z, S^{-1}z)_1 = (z, z)$.

In the above computation we used the fact that T satisfies both parts of property (b) in Proposition 1, and we used the fact that T maps into C. So V' is *-preserving on the unitary elements of A, and since every element of A is a linear combination of four unitary elements, we have that V' is a *-representation.

Applications and remarks. J. Dixmier has asked the following question: Let $A \subseteq B(H)$ be a von Neumann algebra. Suppose $b \in B(H)$ is such that b(H) is invariant for A'=the commutant of A. Then does there exist an operator $a \in A$ with a(H)=b(H)? Using Theorem 1 we can answer this question in the affirmative in a special case.

PROPOSITION 2. Let $A \subseteq B(H)$ be a strongly amenable C^* -algebra. Let $b \in B(H)$ be such that b(H) is invariant under A. Then there is an operator $a \in A'$ with a(H) = b(H).

PROOF. The proof is almost exactly the same as a proof of C. Foias [4, Lemma 8] which uses Dixmier's theorem for representations of amenable groups. Since $(bb^*)^{1/2}$ and b have the same range, we may assume that $b \ge 0$. Now define a representation $V: A \rightarrow B(H)$ as follows: For $d \in A$, $d(b(H)) \subset b(H)$, so if $x \in H$, there is an unique vector $y \in \text{null}(b)^{\perp}$ such that (db)(x)=by. Let V(d)x=y. Then V(d) is well defined, V(d) is clearly linear, and V(d) has closed graph. So $V(d) \in B(H)$. Also $V(d)(H) \subseteq$ $\operatorname{null}(b)^{\perp} = (b(H))^{-}$ and db = bV(d). It is then easily seen that V is linear with closed graph and V(cd) = V(c)V(d). Hence $V: A \rightarrow B(H)$ is a continuous representation, so by Theorem 1, there is a positive invertible $S \in B(H)$ such that $U(d) = SV(d)S^{-1}$ is a *-representation. Let $S^{-1}b = ua$ be the polar decomposition of $S^{-1}b$. Then $bS^{-1}=au^*$, so $b=au^*S$ and $b(H) \subseteq a(H)$. Also $bS^{-1}u = a$, so $a(H) \subseteq b(H)$ and a(H) = b(H). We will thus be finished when we show that $a \in A'$. Let $d \in A$. Then $db = bV(d) = bS^{-1}U(d)S$, so $dbS^{-1}=bS^{-1}U(d)$ and $dau^*=au^*U(d)$, or $da=au^*U(d)u$ for all $d\in A$. So we also have $d^*a=au^*U(d^*)u$, and since U is a *-representation we have d*a=au*V(d)*u, or ad=u*U(d)ua. Then $a^2d=au*U(d)ua=da^2$. So $a^2 \in A'$ and $a \in A'$.

The following corollary is then immediate.

COROLLARY 4. Let $A \subseteq B(H)$ be a von Neumann algebra such that A' contains a weakly dense strongly amenable C^* -algebra B. Suppose $b \in B(H)$ is such that b(H) is invariant for B. Then b(H) is also invariant for A' and there is an $a \in A$ with a(H) = b(H).

By [11] every Type I von Neumann algebra on a separable Hilbert space contains a weakly dense GCR algebra. So since GCR algebras are strongly amenable, the above corollary covers the case when A is a Type I von Neumann algebra on a separable Hilbert space, as well as the case when A' is a hyperfinite von Neumann algebra.

We close by remarking that Ehrenpreis and Mautner [3] give an example of a GCR group G which has a uniformly bounded representation on a Hilbert space that is not similar to a unitary representation. Our Theorem 1 then implies that the induced representation of $L^1(G)$ is not continuous in the C^* -algebra norm. The author does not know of an example of a continuous representation of a C^* -algebra on a Hilbert space that is not similar to a *-representation.

REFERENCES

- 1. J. Dixmier, Les moyennes invariantes dans les semi-groupes et leurs applications, Leopoldo Fejér et Frederico Riesz 70 annos natis dedicatus, Acta Sci. Math. Szeged 12 (1950), pars A, 213-227. MR 12, 267.
- 2. ——, Les C*-algèbres et leurs représentations, Cahiers Scientifiques, fasc. 29, Gauthier-Villars, Paris, 1964. MR 30 #1404.
- 3. L. Ehrenpreis and F. I. Mautner, Uniformly bounded representations of groups, Proc. Nat. Acad. Sci. U.S.A. 41 (1955), 231-233. MR 17, 126.
 - 4. Ciprian Foias, Invariant semi-closed subspaces (preprint).
- 5. F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, no. 16, Van Nostrand, New York, 1969. MR 40 #4776.
- 6. A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. No. 16 (1955). MR 17, 763.
 - 7. B. E. Johnson, Cohomology in Banach algebras (preprint).
- 8. Richard V. Kadison, On the orthogonalization of operator representations, Amer. J. Math. 77 (1955), 600-620. MR 17, 285.
- 9. J. L. Kelley and I. Namioka, *Linear topological spaces*, University Series in Higher Math., Van Nostrand, Princeton, N.J., 1963. MR 29 #3851.
- 10. M. A. Naĭmark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. MR 19, 870; MR 22 #1824.
- 11. T. Okayasu, On GCR-operators, Tôhoku Math. J. (2) 21 (1969), 573-579. MR 41 #5983.
- 12. J. T. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math. 16 (1963), 19-26. MR 26 #6812.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS 66044