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ON  HIGH  ORDER  DERIVATIONS  OF FIELDS

J.   N.   MORDESON  AND  B.  VINOGRADE

Abstract. Let 3(L\K) denote the derivation algebra of a field

extension L\K of prime characteristic. If L\K is purely inseparable

and has an exponent, then every intermediate field F of L\K equals

the center of S¿(L\F). Here we prove the converse of this statement.

Let 3j(L\K)=L®&\(L\K) denote the derivation algebra of a field ex-

tension L\K where ¿&0(L/K) is the set of all high order derivations of L\K

[3, pp. 1 and 6]. In [4, p. 19, Theorem 3], it is shown that if L/K is purely

inseparable and has an exponent, then F=Z(3i(L\F)) for every intermedi-

ate field F of L/K where Z(9(L\F)) denotes the center of 3¡(L¡F). This

result permits a Galois correspondence between the intermediate fields of

L\K and closed subrings of Qi(L\K) containing L. In this note, we show

that the converse of this result is true; that is, for an arbitrary field ex-

tension L/K of characteristic /»>0, if F=Z(^(£/F)) for every intermediate

field F of L/K, then L/K is purely inseparable and has an exponent.

Unless otherwise specified, L/K always denotes a nontrivial field ex-

tension of characteristic p>0.

Our notation coincides with that in [3] and [4]. The set of <jrth order

derivations of LjK into L is denoted by 2>(£\L\K). Thus S>0(L/K)=

U^a^i,"(£/*)■ CQ(L/F) denotes the set, {x|xe£, for all De&0q)(L/F),

D(x)=0}.
For any intermediate field F of L/K, Z(3i(L\F)) is an intermediate field

of L/K containing F and equals the set {x|xeL, for all De3¡0(L¡F),

£>(x)=0}.

Theorem.    The following conditions are equivalent:

(1) For every intermediate field F of LjK, F=Z(3¡(L\F)).

(2) For every intermediate field FofL/K, F=f)1™iF(L3'<).

(3) For every intermediate field F of L/K, every relative p-base of F/K

is a generating set of F/K.

(A) L/K is purely inseparable and has an exponent.
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Proof. (1)<=>(2). This equivalence is immediate once we show that for

any F, Z(®(L\F))=Ç\?LX F(L"). Let xeOZi F(L*\ Then, for any q and

any De^(L\F), D(x)=0 since F^^C^L/F) by [3, p. 5, Corollary

7.1]. Since S>0(L/F)=U^1^')(L/JF), we have xeZ(9(L\F)). Hence

C]ZiF(LTli)^Z(S!(LlF)). Let xeZ(S>(L¡F)). If x^fli-i F(L*\ then there
exists an i such that x$F(Lp'). In this case, by [4, p. 18, Theorem 2], there

exists De@0(LlF(Lvi)) (whence De3>0(L/F)) such that D(x)^0 contrary

to the fact that xeZ(®(L\F)). Thus xe{\tLxF(Lvi) so that Z(9)(L\F))<^

nzi f(l*\
(3)<=>(4). Suppose (3) holds. Let F be any intermediate field of L/Ksuch

that F=>K (strict inclusion). Let M be any relative/»-base of F\K. Since

F=K(M) and F=>K, M^0. If F\K is separable, then M is algebraically

independent over K. In this case, the relatives-base Mp+1 = {mp+1\meM}

of F\K cannot generate F\K else we contradict the algebraic independence

of M over K. Thus F/K cannot be separable. Hence LjKhas no intermediate

fields (other than K) which are separable over K. Thus LjK is purely in-

separable. That L/K has an exponent now follows by [1, p. 240, Corollary

to Theorem 1] or [2, p. 12, Corollary 1.18]. By [2, p. 2, Corollary 1.6],

we have that (4) implies (3).

(2)=>(3). Suppose there exists an intermediate field L' of LjK for which

there exists a relative /»-base M such that L'^> K(M). Set F=K(M). Then

L'=F(L'vi), i=l,2, —. Thus L'(Lv<)=F(Lvi), i-1,2, ■■■, so that

f|¿=i F(Lvi)=f)Z1 L'(LP')^L'=>F, a direct contradiction of (2).

(4)=>(2). Immediate,   q.e.d.
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