ON HIGH ORDER DERIVATIONS OF FIELDS

J. N. MORDESON AND B. VINOGRADE

ABSTRACT. Let $\mathcal{D}(L/K)$ denote the derivation algebra of a field extension L/K of prime characteristic. If L/K is purely inseparable and has an exponent, then every intermediate field F of L/K equals the center of $\mathcal{D}(L/F)$. Here we prove the converse of this statement.

Let $\mathcal{D}(L/K) = L \oplus \mathcal{D}_0(L/K)$ denote the derivation algebra of a field extension L/K where $\mathcal{D}_0(L/K)$ is the set of all high order derivations of L/K [3, pp. 1 and 6]. In [4, p. 19, Theorem 3], it is shown that if L/K is purely inseparable and has an exponent, then $F = Z(\mathcal{D}(L/F))$ for every intermediate field F of L/K where $Z(\mathcal{D}(L/F))$ denotes the center of $\mathcal{D}(L/F)$. This result permits a Galois correspondence between the intermediate fields of L/K and closed subrings of $\mathcal{D}(L/K)$ containing L. In this note, we show that the converse of this result is true; that is, for an arbitrary field extension L/K of characteristic P > 0, if $F = Z(\mathcal{D}(L/F))$ for every intermediate field F of L/K, then L/K is purely inseparable and has an exponent.

Unless otherwise specified, L/K always denotes a nontrivial field extension of characteristic p>0.

Our notation coincides with that in [3] and [4]. The set of qth order derivations of L/K into L is denoted by $\mathcal{D}_0^{(q)}(L/K)$. Thus $\mathcal{D}_0(L/K) = \bigcup_{q=1}^{\infty} \mathcal{D}_0^{(q)}(L/K)$. $C_q(L/F)$ denotes the set, $\{x \mid x \in L, \text{ for all } D \in \mathcal{D}_0^{(q)}(L/F), D(x) = 0\}$.

For any intermediate field F of L/K, $Z(\mathcal{D}(L/F))$ is an intermediate field of L/K containing F and equals the set $\{x \mid x \in L, \text{ for all } D \in \mathcal{D}_0(L/F), D(x) = 0\}$.

THEOREM. The following conditions are equivalent:

- (1) For every intermediate field F of L/K, $F=Z(\mathcal{D}(L/F))$.
- (2) For every intermediate field F of L/K, $F = \bigcap_{i=1}^{\infty} F(L^{p^i})$.
- (3) For every intermediate field F of L/K, every relative p-base of F/K is a generating set of F/K.
 - (4) L/K is purely inseparable and has an exponent.

Received by the editors July 12, 1971.

AMS 1970 subject classifications. Primary 12F15; Secondary 16A72.

Key words and phrases. High order derivations, field extension, purely inseparable, relative p-base.

- PROOF. (1) \Leftrightarrow (2). This equivalence is immediate once we show that for any F, $Z(\mathcal{D}(L/F)) = \bigcap_{i=1}^{\infty} F(L^{pi})$. Let $x \in \bigcap_{i=1}^{\infty} F(L^{pi})$. Then, for any q and any $D \in \mathcal{D}_0^{(q)}(L/F)$, D(x) = 0 since $F(L^{pq}) \subseteq C_q(L/F)$ by [3, p. 5, Corollary 7.1]. Since $\mathcal{D}_0(L/F) = \bigcup_{\alpha=1}^{\infty} \mathcal{D}_0^{(q)}(L/F)$, we have $x \in Z(\mathcal{D}(L/F))$. Hence $\bigcap_{i=1}^{\infty} F(L^{pi}) \subseteq Z(\mathcal{D}(L/F))$. Let $x \in Z(\mathcal{D}(L/F))$. If $x \notin \bigcap_{i=1}^{\infty} F(L^{pi})$, then there exists an i such that $x \notin F(L^{pi})$. In this case, by [4, p. 18, Theorem 2], there exists $D \in \mathcal{D}_0(L/F(L^{pi}))$ (whence $D \in \mathcal{D}_0(L/F)$) such that $D(x) \neq 0$ contrary to the fact that $x \in Z(\mathcal{D}(L/F))$. Thus $x \in \bigcap_{i=1}^{\infty} F(L^{pi})$ so that $Z(\mathcal{D}(L/F)) \subseteq \bigcap_{i=1}^{\infty} F(L^{pi})$.
- $(3)\Leftrightarrow (4)$. Suppose (3) holds. Let F be any intermediate field of L/K such that $F\supset K$ (strict inclusion). Let M be any relative p-base of F/K. Since F=K(M) and $F\supset K$, $M\neq\varnothing$. If F/K is separable, then M is algebraically independent over K. In this case, the relative p-base $M^{p+1}=\{m^{p+1}|m\in M\}$ of F/K cannot generate F/K else we contradict the algebraic independence of M over K. Thus F/K cannot be separable. Hence L/K has no intermediate fields (other than K) which are separable over K. Thus L/K is purely inseparable. That L/K has an exponent now follows by [1, p. 240, Corollary to Theorem 1] or [2, p. 12, Corollary 1.18]. By [2, p. 2, Corollary 1.6], we have that (4) implies (3).
- (2) \Rightarrow (3). Suppose there exists an intermediate field L' of L/K for which there exists a relative p-base M such that $L' \supseteq K(M)$. Set F = K(M). Then $L' = F(L'^{p^i})$, $i = 1, 2, \cdots$. Thus $L'(L^{p^i}) = F(L^{p^i})$, $i = 1, 2, \cdots$, so that $\bigcap_{i=1}^{\infty} F(L^{p^i}) = \bigcap_{i=1}^{\infty} L'(L^{p^i}) \supseteq L' \supseteq F$, a direct contradiction of (2).
 - $(4) \Rightarrow (2)$. Immediate. q.e.d.

REFERENCES

- 1. J. Mordeson and B. Vinograde, Exponents and intermediate fields of purely inseparable extensions, J. Algebra 17 (1971), 238-242.
- 2. ——, Structure of arbitrary purely inseparable extension fields, Lecture Notes in Math., Vol. 173, Springer-Verlag, New York, 1970.
 - 3. Y. Nakai, High order derivations. I, Osaka J. Math. 7 (1970), 1-27. MR 41 #8404.
- 4. Y. Nakai, K. Kosaki and Y. Ishibashi, High order derivations. II, J. Sci. Hiroshima Univ. Ser. A-I Math. 34 (1970), 17-27. MR 42 #1807.

DEPARTMENT OF MATHEMATICS, CREIGHTON UNIVERSITY, OMAHA, NEBRASKA 68131

DEPARTMENT OF MATHEMATICS, IOWA STATE UNIVERSITY, AMES, IOWA 50010